
Multiobjective VAR planning using the 
goal-attainment method 

Y.-L. Chen 
C.-C. Liu 

Indexing terms: Power systems and plant, Simulated annealing 

Abstract: In the paper, a new formulation of 
multiobjective optimisation (MO) for reactive 
power (VAR) planning is presented. The objectives 
are active power loss cost reduction, minimisation 
of the cost of the investment VAR sources, system 
security margin robustness and reduction of the 
voltage deviation of the system. The operating 
constraints, load constraints of the system and 
expansion constraints, are taking into consider- 
ation. Hence, the new formulation is a con- 
strained, multiobjective and nondifferentiable 
optimisation problem with both equality and 
inequality constraints. The goal-attainment 
method, based on the simulated annealing (SA) 
approach to solving general multiobjective opti- 
misation problems by assuming that the decision 
maker (DM) has goals for each of the objective 
functions, is presented. The solution methodology 
can find a desirable, global noninferior solution 
for the MO problem, even when the objective 
space is nonconvex. Results of application of the 
method to multiobjective VAR planning are also 
presented. 

1 Introduction 

The goal of VAR planning is to provide the system with 
enough VAR sources for the system to operate in an eco- 
nomic condition with enhanced system security, while 
load constraints and operational constraints with respect 
to credible contingencies are met. 

In the past [I-IO], many formulations for a more sys- 
tematic approach to VAR planning have been developed. 
Many of these formulations arc based on linear- 
programming methods, and the objective function is 
treated as contnnuous [3, 41. Sachdeva and Billinton [5] 
proposed a nonlinear analysis scheme for the planning of 
a network compensator. An efficient dual simplex linear- 
programming technique coupled with relaxation and 
contingency analysis was employed for problem solving 
[SI. Obadina and Berg [9] presented a method for iden- 
tifying dispersed reactive power supplies that would 
enhance power systems’ pre- and post-contingency 
voltage security, subject to technical and economic con- 
straints. A common characteristic of these methods was 
that the value of VAR sources was still treated as contin- 
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uously differentiable, and they expressed the multi- 
objective VAR planning problem as a single-objective 
optimisation. The salient feature was that the system 
security margin was not taken into consideration in the 
problem [l-8, lo]. 

This paper presents a new formulation of multi- 
objective optimisation for VAR planning. The objectives 
consist of three important terms, which are the economic 
operation condition of system, the system security margin 
and the voltage deviation of the system. The operating 
constraints, load constraints and the new VAR source 
expansion constraints are taken into consideration. 

In multiobjective problems, the objectives arc usually 
noncommensurable and usually conflict with each other 
in that any improvement of one objective can be reached 
only at the loss of another. It is necessary to present a 
DM for the problem that implies the trade-offs between 
objectives. The aim of this problem is to find a com- 
promise for the satisfying solution of the DM. It can be 
readily handled by the goal-attainment (CA) method. 
The SA technique is a powerful tool for solving the VAR 
planning problem, which belongs to a class of com- 
binatorial optimisation problems, and it can search for 
the global optimal solution [15-221. As a result, the solu- 
tion methodology presented, the C A  method based on 
the SA technique, can find a desirable, global noninferior 
solution for the multiobjective optimal VAR planning 
problem. 

In this paper, the contributions arc summarised as 
follows: A new formulation of MO for VAR planning is 
presented. Not only is economic operation taken into 
consideration, but the system security margin is taken 
into account. The new formulation represents a more rea- 
listic mathematical model for the actual behaviour of a 
power system. The C A  method based on SA is presented 
to solve for a general MO problem by assuming that the 
DM has goals for each objective, and it is not subject to 
convexity limitations of any kind. The solution method- 
ology can handle easily a multiobjective, non- 
differentiable optimisation problem with both equality 
and inequality constraints. The solution methodology 
can search for a desirable, global noninferior solution for 
a general MO problem, even if a nonconvex objective 
space is met. 

2 Problem formulation 

In this Section, a new formulation for multiobjective 
VAR planning is presented. This formulation treats the 
problem as a multiobjective mathematical programming 
problem, which is concerned with the attempt to mini- 
mise each objective, simultaneously. Meanwhile, the 
equality and inequality constraints of the system must be 
satisfied. 
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2.1 Load constraints 
The load constraints are real and reactive power balance 
load flow equations, which hold for every busbar of the 
system. These equality constraints can be written in 
compact form as 

L(x, U, w) = 0 (1) 
where x and U imply the state variable vector and the 
control variable vector, respectively, and w is the vector 
of VAR expansion variables. 

2.2 Operating constraints 
The system operating constraints consist of the available 
range of active and reactive generated power, the bound 
of the controlled transformer tap change, line flow limits, 
security bounds on voltage magnitudes, and limits on 
voltage angle difference between every two busbars. 
These constraints are summarised in a compact form as 

(2) G(x, U, w )  < 0 
2.3 Expansion constraints 
.The expansion constraints are the limits of the install- 
ation of new VAR sources. For instance, it is impossible 
to install more VAR sources if there is not enough space 
in a substation, so that to install the sizes and types of 
the VAR sources needed also lies on their space upper 
limits. We express the vector of expansion variables w, 
constrained by 

where qei and qri are the added capacitive and inductive 
compensations at busbar i ,  respectively. They are all 
integer numbers, and QL is a set of all candidate busbars 
at which new VAR sources can be installed. For conve- 
nience, we express the above set of constraints in 
compact form as 

R(w)  < 0 (3) 
2.4 Objective functions 
The objective functions of the reactive power planning 
problem comprise three important terms, which are the 
system loss and VAR source investment costs, the system 
security margin and the voltage deviation of the system. 

2.4.1 Loss and investment costs: This objective is to 
minimise the total real power loss cost and the purchase 
cost of the newly installed VAR sources, which can be 
described as 

fib, U, W )  KePioSs(x, U, WID; + C ( W )  (4) 
where Ke($/kWh) is the cost of real power, Di is the dura- 
tion of the system operating time, l',,&, U, w)  is the 
system real power loss, and C(w)  is the total purchase 
cost of the newly installed VAR sources, illustrated as 

where di  is the installment cost at busbar i. sCi and sri are 
the unit costs of the capacitor and reactor, respectively. w 
is called the expansion variable vector, and it indicates 
whether or not to install VAR sources and identifies the 
VAR source types and sues. 

2.4.2 System security margin: This objective is con- 
cerned with the static voltage stability of the system and 
investigates how to reduce the risk of voltage collapse in 
the system. Voltage collapse means that the system is 
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unable to meet a given load demand, and this situation is 
a critical system state. Knowing the critical state, an indi- 
cation of the system security from voltage collapse is 
available. Having determined the critical state, a security 
margin SM can be defined as 

and S? are the MVA loads of busbar j at 
initial state and critical state, respectively. J, is a set of 
load busbars. For a stable system operating condition, 
SM must take values between 0 and 1. A negative value 
of SA4 means that the system is unable to supply the 
specified initial MVA demand, and the system is in 
voltage collapse. In the VAR planning problem, to reduce 
the risk of voltage collapse of the system means maximis- 
ing SM by installing VAR sources or not. To match the 
minimisation problem, this objective is defined as 

where s;+d 

c SYbl 
c s? f 2 ( x ,  U, W )  = 1 - SM = (7) 

j e J L  

To minimise this objective involves keeping away from 
the voltage circuit critical (collapse) state, and then the 
system can suffer more severe contingencies (e.g. line 
outage etc.) but not voltage collapse. (1 - SM) = 1 at the 
voltage critical state. (1 - SM) > 1 at the voltage collapse 
state, and (1 - SM) < 1 at the voltage stable state. 

The following nonlinear optimisation problem is 
solved to determine the critical MVA load demand 

J L  S y  [ll], and we briefly discuss it as below. 
Maximise (total MVA demand) subject to 
(a) distribution constraints at load busbars 
(b) MVAR and MW limits on generators 
(c) generator MW participation 
(d)  load-voltage characteristics at load busbars 
(e) constant power factor of MVA demand 
(f) limits on controlled voltages and LTC transformer 

taps. 

The above constraints may be briefly summarised as 
follows (see Reference 11 for more detail) 

(a) These constraints describe and enforce a prescribed 
pattern of increase of the MVA demand vector. 

(b) These contrain the MW and MVAR outputs of the 
respective generators to be within their specified limits. 

(c) As system demand increases, each generating-unit 
MW output needs to be changed to participate in the 
load change. This constraint set enforces a prescribed 
participation of system active power production 

(d) The static load-voltage characteristics are enforced 
by this constraint set. The voltage dependence of the load 
at busbar i is modelled as 

PLi = Poi vpi 
QLi = Q,,; Vfi 

where PQi and Qoi are the prescribed real and reactive 
loads at rated (normal) voltage, and pi and qi are con- 
stants that reflect the load-voltage characteristics at 
busbar i. 

(e) This is a constraint set that maintains a specified 
power factor for the respective busbar loads 

(f)  Controlled voltages are maintained within speci- 
fied limits if the generator AVR or the LTC is still oper- 
ative. 
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2.4.3 Voltage-magnitude deviation: This objective is 
concerned with the voltage deviation of the system. 
Voltage deviation in each busbar is defined as 

(9) 

where 

0 i f x < O  
x otherwise 

and q is a voltage magnitude at busbar i, Vi"'"' is the 
ideal specific voltage at busbar i and is usually set to be 
1 P.u., and dui is the tolerance of maximum deviation in 
the voltage. It is obvious that a voltage between its crisp 
limits will have a value of zero (i.e. V D i  = 0). As the 
voltage exceeds this limit, the value of V D i  increases and 
depends on the operating conditions of the system. 
Therefore the objective of the voltage profile is con- 
sidered as follows 

To minimise this objective means trying to push the 
voltage values towards its crisp limits. 

2.5 Overall problem 
We discuss the issue of co-ordinating the above three 
objective functions namely 

(a) minimisation of the operating and investment costs 
(b) enhanced system security margin 
(c)  minimisation of voltage deviation 

In summary, we want to seek an optimal VAR planning 
configuration X* among all possible configurations x by 
installing VAR sources or not, such that all objective 
functions are optimised while the load constraints, oper- 
ating constraints and expansion constraints are satisfied. 
The mathematical formulation for this problem is 
expressed as 

min J,(x, U, w) 
" . W S X  

min f3(x. U, w )  
Y . W E X  

subject to (1)-(3). 
As a result. the VAR planning problem is a con- 

strained, multiobjective, nondifferentiable optimisation 
problem. The goal-attainment method based on the SA 
approach for solving this problem will be presented in 
this paper. 

Before leaving this Section, we must define a specific 
and very important concept of the noninferior set in the 
general MO problem [12]. 

Definition (noninferior solution): z* is said to be a nonin- 
ferior solution of MO if there exists no other feasible z 
(i.e. z E x )  such thatf(z) <f(z*), meaning&) <fxz*) for 
all i = 1, 2, . . . , m, with strict inequality for at least one i. 
f(z*) is said to be a noninferior solution of MO in objec- 
tive space. 

3 The goal-attainment method 

The goal-attainment (GA) method [13, 141 is a power 
tool to find the best-compromise solution in MO prob- 
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lems and it is not subject to convexity limitations of any 
kind. In this approach, a vector of weights w relating the 
relative under- or over-attainment of the desired goals 
must be elicited from the decision maker in addition to 
the goal vector y. To find the best-compromise solution, 
we solve the following problem 

mina 
2°K 

subject to 

y + aw >f(z) w E A, 

where a is a scalar variable unrestricted in sign, x is a 
feasible-solution region, and As = {w E 9"s.t. wi 3 E, 

wi = 1 and E > 0). If some wi = 0 (components of 
vector w), it means that the maximum limit of objectives 

It can be easily shown that the set of noninferior solu- 
tions can be generated by varying w over A, with E = 0 
even for nonconvex problems. The mechanism by which 
this method operates is illustrated for the two-objective 
case in Fig. 1. The vector y is represented by the decision 

fi(z) is Yi. 

I 

Y1 '7 f l  

Fig. 1 Coal-attainment method with two-objective case 

goal of the DM, and the direction of w is the preference 
direction of the DM. Given vector w and y ,  the direction 
of the vector y + aw can be determined, and the problem 
eqn. 12 is equivalent to finding a feasible point on this 
vector in objective space which is closest to the origin. It 
is obvious that the optimal solution of eqn. 12 will be the 
first point at which y + aw intersects the feasible region F 
in the objective space. Should this point of intersection 
exist, it would clearly be a noninferior solution. 

It should be pointed out that the optimum value of a 
will inform the DM of whether the goals are attainable or 
not. A negative value of a implies that the goal of the 
DM is attainable, and an improved solution will be 
obtained. Otherwise, if a > 0, then the DM goal is unat- 
tainable. 

4 Simulated annealing 

Simulated annealing is a powerful general-purpose tech- 
nique for solving combinatorial optimisation problems. It 
is a randomisation algorithm and can asymptotically 
search for a global optimum solution with probability of 
1 [lS]. This technique exploits the resemblance between 
a minimisation process and the cooling of molten metal. 
The energy of the metal is minimal when the annealing 
process is finished. We will obtain an equivalence: the 
cost is minimal as the SA technique is applied. In this 
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algorithm, a parameter T called temperature is defined. 
The algorithm of SA can be described as below. 

Simulated annealing algorithm: 
Step I: Randomly choose an initial condition 

(solution) 
Step 2: Generate a feasible point in the neighbour- 

hood of the current point from solution space 
Step 3: Evaluate the increase in the cost AC 
Step 4 ; :  If AC < 0, then accept the new solution point 

and go to Step 6 
Step 5 :  A random number r uniformly distributed in 

the interval [0, 1) is chosen. If exp ( - A C j T )  > r, then 
accept the new point, otherwise, the new point is dis- 
carded. 

Step 6 :  If the moves are not finished, then go to Step 2 
Step 7: Cooling down temperature T = p * T 
Step 8:  If T > T,,,, go to Step 2 
Step 9: Output global optimal solution 

At each temperature, randomly choose a new solution 
point S' by perturbing the current point S. Then, evaluate 
the increase cost, AC = cost(S') - cost(S). If the move 
that reduces the cost is downhill, then the move is 
accepted. If the move that increases the cost is uphill, then 
the move is accepted with a probability of exp (- AC/T). 
Owing to the probabilistic selection rule, SA can always 
escape out of a local optimum in which it could become 
trapped and proceed to the desired global optimum. This 
feature distinguishes the SA from the greedy search 
approach [l5, 16, 191. 

The temperature is lowered according to the rules 
T,,, = fl(T,) * T,,  where p(&) is a constant smaller than, 
but close to, 1. Typical values lie between 0.8 and 0.99. 
When the acceptance ratio is low or the sample mean 
and variance of cost values at current temperature have 
big drops, then fl(T,) is adjusted to a higher value to 
avoid becoming stuck at a local optimum point. Other- 
wise, j?(T,) is adjusted to a lower value (say 0.85) to 
increase the convergence speed. 

The advantages of the SA approach applied to 
optimum VAR source planning are that it can handle a 
mixed-integer nonlinear-programming problem and can 
search towards a (near) global optimum solution [20- 
221. Hence, the GA method based on SA for multi- 
objective VAR planning is presented in the following 
Section. 

5 Solution algorithm 

A best-compromise, (near) global optimum solution will 
be obtained by the GA method based on SA method- 
ology. An MO problem can be converted into a single- 
objective optimisation by the GA method, and a 
single-objective optimisation can easily be handled by the 
SA approach. The solution algorithm proposed can offer 
the global optimum solution for the multiobjective VAR 
planning problem and is described as below. 

Solution algorithm for multiobjective VAR source plan- 
ning: 
/* Initialisation */ 

Step l a :  Input system data, vector w and the decision 
vector y .  The direction of vector w is the direction of pref- 
erence of the DM to approach the noninferior solution. 
The decision vector y is given by the DM (then go to 
Step 2) or automatically generated by Step lb. 
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Step Ib: To give a decision point automatically. Using 
a single-objective optimisation method to determine 
every decision component of objective functions 

yi=minjJz) f o r i = 1 , 2 ,  ..., m (13) 

/* The GA method based on SA *I 
Step 2: Input control parameters. Input control 

parameters, such as the initial temperature, random 
number seed, cooling rate, the step size of control setting 
(e.g. 3 MVAR) and the number of moves at each tem- 
perature. 

Z E X  

Step 3: Obtain an initial feasible configuration. 
(1) Generate a new configuration using a perturbation 

mechanism (see References 20-22 for more detail) 
(2) For the new configuration, run a load flow to 

check the feasibility. If any constraint is violated, go to 
(1). Otherwise, proceed to (3) 

(3) Calculate each objective functionA(z) 
(4) Check the objective constraints if some wi = 0 

If wi = 0 and f{z) > yi, go to (1); otherwise, proceed to 
(5).  

(5) Search the value of a using the following criterion 

i Wi 

Step 4 :  Design a proper global cooling schedule. At 
each temperature T,, perform a number of L, moves. For 
move = 1, 2, ..., L, ,  do steps 5-7. Otherwise, proceed to 
Step 8. 

Step 5 :  Generate a new feasible configuration. 
(1) Generate a new configuration using a perturbation 

mechanism. 
(2) For the new configuration, run a load flow to 

check the feasibility. If any constraint is violated, go to 
(1). Otherwise, proceed to (3). 

(3) Calculate each objective functionA(z). 
(4) Check the objective constraints if some wi = 0. 
(5) Search for the value of a using the criterion of eqn. 

14. 

Step 6 :  Update the system configuration. Use the 
value of Aa to determine the system configuration. Retain 
the new configuration or restore it to the previous con- 
figuration based on the acceptation criterion. 

Acceptation probability: 

P,(accept new conjiguration} 

( 1  i fAaQO 
- 
- iexp (F) otherwise 

Step 7: Check the stop criterion. If the stop criterion is 
not satisfied, then the system is not yet frozen; continue 
the process by returning to Step 4. Otherwise, proceed to 
next step. 

Step 8 :  Print out the global optimum configuration. 

In the above algorithm, eqn. 14 is a function that forces 
the new configuration to satisfy the constraint 
y + aw >f(z) in the GA method by choosing the largest 
value a, and the SA approach is applied to minimise the 
value a. It is obvious that Step lb  can be automatically 
given an initial decision preference y for the DM. The 
direction of vector w is chosen for the DM preference 
direction from point y to close a noninferior solution in 
objective space. Given vector w and y ,  the methodology 
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of the GA method based on the SA approach can find a 
feasible point on vector y + aw in objective space, the 
solution point is that closest to the origin, and this feas- 
ible point is a noninferior solution of the problem. 

The output of the above solution algorithm gives the 
optimum configuration of the installed VAR sources, and 
the solution point is matched to the decision point along 
the direction w as closely as possible. A numerical study 
with very promising results is addressed in the following 
Section. 

4 -  

3.5 

3 -  

2.5- 

a 2 -  

15-  

1 -  

0.5 

6 Numerical examples 

The results of the application of the proposed method to 
the AEP 14-busbar system [ll] are now presented. The 
initial operating conditions are shown in Table 1 and 2. 

Table 1 : Estimate of initial operating condition (AEP 14 
busbar) 

Busbar Busbar Busbar Statict 
voltage power* shunt 

~~ 

magnitude angle M W  MVAR 

- 

temperature decrease - 
optimal n -0.24178 

- 

1 1.06 0.0 - - 
2 1.045 0.0 40.0 0.0 
3 1.01 0.0 -94.2 -19.0 
4 1.0 0.0 -57.8 -23.9 
5 1.0 0.0 -47.6 -1.6 
6 1.01 0.0 0.0 0.0 
7 1.0 0.0 0.0 0.0 

0.2 

8 1.01 0.0 0.0 0.0 
9 1.0 0.0 -29.5 -16.6 0.19 

10 1.0 0.0 -29.5 -5.8 

- .-. ,. .I 

11 1.0 0.0 -13.5 -5.8 
12 1.0 0.0 -36.1 -11.6 
13 1.0 0.0 -23.5 -15.8 
14 1.0 0.0 -14.9 -10.0 

* for load 
t 100 MVAR base 

Table 2: Regulated busbar data 

Busbar MVAR limits M W  limits -- 
minimum maximum minimum maximum 

~~ 

2 -6.0 24.0 30.0 70.0 
3 -6.0 24.0 0.0 0.0 
6 -6.0 24.0 0.0 0.0 
8 -6.0 24.0 0.0 0.0 

The constant power model is applied to all load 
demands. To determine the maximum MVA load 
demand, z.. J L  Symir, the components of the distribution 
vector p are chosen to be pi = Sjniria'/xjs JL Syi", and the 
participation factors of the generating unit are chosen as 
in Reference 11. 

Two different studies illustrate the performance of the 
solution algorithm proposed. For all studies, one bank of 
the VAR source is set to be 3 MVAR, the specific voltage 
Vide'( of all load busbars is set to be 1 P.u., dui is set to be 
0.02 p.u. (the crisp limits of voltage in each load busbar 
are between 0.98-1.02 P.u.), and the following parameters 
are used: power loss cost weight ( K ,  = 2.31 $NT/kWh, 
Di = 10 x 365 x 24(h), ten years), VAR source cost 
weight (sei = 11 385 $NT/bank, s , ~  = 16400 $NT/bank 
and di = 420000 $NT/location), and qy and q y  are all 
limited to 90 MVAR (30 banks). The K ,  parameter is the 
average cost of real power in Taiwan currently. The life- 
time of the VAK compensator is determined as ten years, 
and the other cost parameters are all estimated according 
to the real conditions in Taiwan. 
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In study 1, busbars 4, 5, 9, 11, 13 and 14 are selected as 
candidate busbars for the installation of new VAR 
sources (i.e. 51, = {4, 5, 9, 11, 13, 14)). At the initialisation 
process, a decision vector y = Cyl, y,, y,]' = c0.5, 0.6, 
0.0]* and vector w = [wl, w 2 ,  w3]' = C0.4, 0.3, 0.31' are 
given by the DM. y1 is the operation and investment cost 
objective, which has been expressed by 10" $NT base, yr  
is the system security margin objective, and y 3  is the 
voltage deviation objective. The very promising results 
are presented in Table 3. In this study, the final result can 
save $NT 1 618 million. 

Table 3: Result of study 1 (AEP 14-busbar system) 

Before DM After % 
planning goals planning reduction 

Loss (100 MW) 0.36799 - 0.2879 21.75 
Cost ( ~ 1 0 "  SNT) 0.74465 0.500 0.5829 21.71 
1 -SM 0.90539 0.600 0.6714 22.50 

1.19330 0.000 0.0725 93.92 
a 3.97760 - 0.2418 - 

w =  [0.4. 0.3, 0.31' 

c VD, 

The convergence behaviours of the proposed method 
in study 1 are shown in Figs. 2 and 3. Fig. 2 shows the 
value of tc plotted as a function of the temperature. The 

temperature decrease I . 

temperature 
Fig. 3 
_____ Cost ( x  IO" SNT) 
~. ~ (I-SM) 
-~ Voltage deviation 

Convergence trajectories oJobjectives (study 1 )  

optimal value a, which is a positive number, informs the 
DM that the decision strategy is unattainable. It also 
should be pointed out that a zigzag convergence traject- 
ory implies that the SA approach escapes from a local 
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minimum towards a global minumum. The convergence 
trajectories of the objectives are shown in Fig. 3. This 
study required 866 s total computer time on a SUN 
SPARC Station 2 to obtain the optimum solutions. In 
spite of the solution algorithm is wasteful time to obtain 
optimal solution, but it is not important to apply in the 
planning problem, because the optimal solution is more 
attractive than the computation time in the planning 
problems. 

In study 2, all load busbars are selected as candidate 
busbar for the installation of new VAR sources, and the 
contingency of a one-line outage is considered. We 
discuss the most severe operating state, outage of the line 
between busbar 1 and busbar 5, for VAR support [SI. 
The initial operating condition, one transmission line 
outage, of the system is unstable, and SM = -17.8% 
which means the power flow equation cannot obtain a 
convergence solution in the initial state. In spite of the 
initial state being a nonfeasible configuration, the meth- 
odology can search for a feasible solution at the initial- 
isation process. 

A decision vector y = C1.03, 0.9, 0.2IT and the vector 
w = C0.4, 0.3, 0.3IT, the preference direction of the DM 
towards the goal, are given. The optimum solution is pre- 
sented in Table 4. The optimum value a, which is a nega- 

Table 4 :  Results of study 2 (AEP 14-busbar  system) 

Contingency IFS D M  After 
condition solution goals planning 

Loss (100MW)  0.6802 - 0.5002 
Cost ( 1 0 ’ O  SNT) * 1.3766 1.03 1.0127 
1 -SM 1.178 0.9990 0.90 0.8215 

1.5761 0.20 0.1120 
a * 4.5872 - -0.0434 

w =  [0.4, 0.3, 0.3J7 
* unstable state 
IFS = initial feasible state 

c VDi 

tive number, informs the DM that the decision strategy is 
attainable, and an improved solution is obtained. This 
study required 931 s total computer time on a SUN 
SPARC Station 2 to obtain the optimum solutions. 

7 Conclusions 

In this paper, a new formulation for the VAR source 
planning problem, treating it as a constrained, multi- 
objective, nondifferentiable optimisation problem, is pre- 
sented. The feature of this formulation is that the 
objectives include the cost of system operation. invest- 
ment cost of VAR sources, security margin of the system 
and voltage deviation of the system. They are mainly 
concerned with the VAR planning problem. 

The goal-attainment based simulated annealing 
method for solving a general multiobjective optimisation 
problem with nonconvex function in objective space is 
developed. The authors believe that the solution scheme 
constitutes an effective approach for dealing with 
decision-making processes, which are particularly evident 
in multiobjective VAR planning problem cases. By the 
proposed method, the DM can find a desirable, global 

efficient solution for the multiobjective optimisation 
problem. The numerical results have proved the per- 
formance of the solution methodology. Hence, the algo- 
rithm is a powerful tool for planners to develop a correct 
investment policy in MO problems. 
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