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ABSTRACT 
With improved speech understanding technology, many 
successful working systems have been developed. However, the 
high degree of complexity and wide variety of design 
methodology make the performance evaluation and error analysis 
for such systems very difficult. The different metrics for 
.individual modules such as the word accuracy, spotting rate, 
language model coverage and slot accuracy are very often helpful, 
but it is always difficult to select or tune each of the individual 
modules or determinr: which module contributed to how much 
percentage of understacding errors based on such metrics. 

In this paper, a new frmework for performance evaluation and 
error analysis for speech understanding systems is proposed 
based on the comparison with the ‘best-matched’ references 
obtained from the word graphs with the target words and tags 
given. In this framework, all test utterances can be classified 
based on the error types, and variour. understanding metrics can 
be obtained accordingly. Error analysis approaches based on an 
error plane are then proposed, with which the sources for 
understanding errors (e.g. poor acoustic recognition, poor 
language model, search error, etc.) can be identified for each 
utterance. Such a framework will be very helpfd for design and 
analysis of speech understanding systems. 

1. INTRODUCTION 
With improved speech understanding technology in recent years, 
many spoken dialogue systems have been successfully developed 
[l]. In general, almost each system is associated with a 
performance evaluation and error analysis scheme. For example, 
the speech recognizers and language understanding modules 
were very often evaluated by different metrics [2], such as the 
spotting rate, the word accuracy, the language model coverage, 
the slot accurac!; etc., but it’s always difficult to select among 
the many available acoustic/linguistic processing modules to 
achieve the best understanding results, and determine which 
module contributed to how much percentage of which type of 
understanding errors based on such metrics. This is apparently 
due to the high degree of complexity of such speech 
understanding systems and the wide variety of design 
methodology and system architecture. Some of the difficulties 
also come from the wide variety of application tasks of such 
systems. Take the example below. Three acoustic recognition 
modules are considered for the acoustic front end of a speech 
understanding system: module A with word accuracy 92%, 
module B with keyword spotting rate 90% and false alarm rate 
7%, and module C with key phrase spotting rate 95% and false 
alarm rate 24%. All these metrics are helpful, but none of them 

can describe how the acoustic modules A, B or C can perform 
within a very complicated speech understanding mechanism and 
which one should be selected. For example, all the three modules 
can generate a word graph for each utterance for understanding 
purposes, but the characteristics of a word graph involved in the 
understanding processes include not only the word accuracies or 
spotting rates, but many other factors such as the discriminating 
functions of the acoustic scores, and the accuracies of the time 
spans for the word candidates in the graph. The interaction 
among such characteristics with the following language 
understanding mechanism is another key. As a result, the 
performance metrics for each individual module may not be very 
helpful in determining the final understanding performance. Also, 
the analysis of the understanding errors and the improvement of 
system performance based on error analysis become very 
difficult as well for the same reason. 
In this paper, a new framework for performance evaluation and 
error analysis for speech understanding systems is proposed 
based on the comparison with the ‘best-matched’ references 
obtained from the word graphs with the target words and tags 
given. In this framework, all test utterances can be classified 
based on the error types, and various understanding metrics can 
be obtained accordingly. Error analysis approaches based on an 
error plane are then proposed, with which the sources for 
understanding errors (e.g. poor acoustic recognition, poor 
language model, search error, etc.) can be identified for each 
utterance. Such a framework will be very helpful for design and 
analysis of speech understanding systems. 

2. THE PROPOSED FRAMEWORK AND 
THE BEST-MATCHED REFERENCES 

In a speech understanding system as shown on the left-hand side 
of Figure 1, each input utterance U is usually first recognized by 
an acoustic front end to produce a set of promising word 
candidates located on different time spans, or a word graph. 
Some graph search algorithms such as the A* search is then 
performed on the graph based on some language models to find 
the desired hypothesis path’ on the graph. Such a hypothesis path 
may contain different types of errors due to deleted, substituted 
or inserted words, poor acoustic or language modeling scores, 
and wrong time-alignments in the word graph. This hypothesis 
path is then transcribed into a hypothesis slot sequence or the 
understanding output (denoted as P,(u) in Figure 1) by some 
semantic processing approaches. The evaluation and error 
analysis method proposed in this paper is shown on the right - 

I The word ‘path’ here may represent a word sequence as in the 
N-best interface or a tag sequence with associated parsing trees. 
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Figure 1. The proposed framework for performance evaluation 
and error analysis methodology 

hand side of Figure 1. The transcribed text for the input utterance 
is first parsed by some semantic parsing algorithm to produce a 
transcription path. This path may include all the target words and 
tags. These target words and tags are then directly applied on the 
word graph obtained in the speech understanding system on the 
left-hand side of the figure to perform the target-given graph 
search, such that all the target words can be obtained as long as 
they are located in the word graph well. The output, the reference 
path as shown in the middle of Figure 1, is therefore the ‘upper 
bound’ of the hypothesis path because all the target words and 
tags are given. This reference path together with the transcription 
path obtained directly from the transcription text then go through 
the semantic processing to produce the reference slot sequence 
(P,(u) in Figure 1) and the transcription slot sequence (P,(u) in 
Figure 1). Again, the reference slot sequence P,(u) is the ‘upper 
bound’ of the hypothesis slot sequence Ph(u). All the evaluation 
and error analysis proposed here in this paper is then based on the 
comparison among the three slot sequences: the hypothesis slot 
sequence P,,(u), the reference slot sequence P,(u), and the 
transcription slot sequence PI@). 
In order to analyze how the defected word graphs actually 
constrained the understanding accuracy, the concept of ‘best- 
matched’ references is introduced here which includes the ‘upper 
bound’ reference path generated by the target-given graph search 
shown in the middle of Figure 1, and the ‘upper bound’ reference 
slot sequence P,(u) after the semantic processing. In principle, 
the ‘best-matched’ reference path is the ‘best obtainable’ path in 
the word graph prior to semantic processing, and the ‘best- 
matched’ reference slot sequence P,(u) gives the ‘best 
obtainable’ understanding of the utterance given the word graph, 
because in both cases the knowledge about the transcription path 
has been given. The above description can be summarized with 

the following inequality: 

A.dph(u), p~(u)) A.dpr(u), Br 

where A.JP,@), PJ(u)) denotes the slot accuracy by comparing the 
slots of P,(u) to those of P,(u), and B, is the reference bound 
indicating the degree of understanding achievable from the given 
word graph or some kind of metric for ‘the quality of the word 
graph’ in terms of understanding. Such a metric is sometimes 
very useful because it provides more information than the 
acoustic metrics alone. For example, different acoustic front ends 
can be compared with this metric for understanding purposes. 
Also, with the proposed approach as shown in Figure 1, more 
detailed error analysis in terms of understanding performance 
also becomes possible as will be given below. 

Figure 2. Utterance clustering according to the relationships 
of the slot sequences P,,(u), P,(u), and P,(u) 

3. UTTERANCE CLASSIFICATION 
Based on the relationships among the three slot sequences, P,,(u), 
P,(u), and P,(u) for each utterance, all the utterances can be 
classified into seven different clusters, as shown in Figure 2. The 
relationship, ‘P,(u) = PJ(u)’ represents ‘completely-matched’, i.e., 
all the slots of P,(u) and P,(u) are identical, the relationship 
‘P,(u) C PJ(u)’ represents ‘partially-matched’, i.e., all slots of 
P,(u) are also slots of P,(u) but the reverse is not true, and the 
relationship ‘P,(u) d PJ(u)’ represents ‘mismatched’ with 
insertion or substitution errors, i.e., some slots of P,(u) are not 
slots of PJ(u). The relationships ‘partially-matched’ (C ), and 
‘mismatched’ (d ) are separately considered, because the 
insertion or substitution errors (mismatched) usually lead to 
misunderstandings which either make the dialog fail or need to 
be corrected by more and complicated dialogs, while pure 
deletion errors (partially-matched) usually only lead to 
incomplete understanding. The classification processes in Figure 
2 have two layers. For each utterance U the reference slot 
sequence PJu) and transcription slot sequence PI@) are first 
compared in the upper layer. If P,(u) P,(u), ‘the quality of the 
word graph’ is really poor. If P,(u) C P,(u) or P,(u) = P,(u), Ph(u) 
and P,(u) are then compared in the lower layer. The seven 
utterance clusters obtained in Figure 2 is thus: 
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s,+sl ‘G8\,, >sa+s, >O Region 1 : between Sa+S, =O and S, =O 
poor acoustic score 

A,={u: P,(u) 
B,={u: P,(u) 

A,=&: P,(u) 
B,=(u: P,(u) 

. A,={u: P,(u) 

C,={u: P,(U) 

e,=@: P,(u) 

Region I ‘\, Region 4 Region 2: between Sa=O and S, =O 
poor acoustic and language- 
modeling scores 

Region 3: between S,+S, =O and So =O s, =O 
poor language-modeling score 

search errors 
Region 4: Sa+S, >O 

.I I , 

In this way, different types of errors can be well classified. For 
example, the cluster A,  consists of all utterances that always lead 
to misunderstandings due to defected word graphs. The cluster B,, 
on the other hand, consists of the utterances for which complete- 
understanding is in principle possible (P,(u) = P,(u)), but not 
achieved (Ph(u) C P,(u)) because of poor acoustic and 
linguistic scores. Based on this clustering scheme, we can further 
define the following sets: 

scrrmp= c, (set of complete-understanding;) 
S,,= B,+ B,+ C, (set ofpartial-understanding) 
S,,,,= A,  + A,+ A, (sei ofmisundersiandingj 
S,,,r= Sic,mp+ S,, (set of correct understanding) 
Se,= S,,, +Sp,.,= A,+ A,+ A,+B,+ B,+ C, (error set) 

Furthermore, some meaningful understanding metrics can be 
defined as follows. 

N (sct lnlp ) 
R romp = complete understanding rate 

N ( S A l l  

R parr = ( parr ) partial understanding rate 
N ( S A I I  ) 

R . =  mis ( smi” ) misunderstanding rate 
N ( S A I /  ) 

R w r r  = ( sct’rr ) correct understanding rate 
N ( S A I I  ) 

where N ( s  j ,’ is the number 
sAN is the union of all seven clusters 

of utterances in s . J 

The errors occurring in the different clusters in the error set S,, 
can be further analyzed, which will be discussed in the next 
section. 

4. ERROR ANALYSIS 
Unlike the error analysis usually performed in large vocabulary 
speech recognizers [3], the analysis for understanding errors here 
emphasizes on the reference path for comparison rather than the 
transcription path. In other words, instead of paying great 
attention to analyzing the differences between the hypothesis 
path and the transcription path, here in this approach the 

Region 3’\. 
Region 2 

sa =O 

differences between the hypothesis path and the ‘upper bound’ 
reference path are analyzed with more attention. This is because 
the function of the graph search here is not to find the 
transcription path, but instead to achieve best possible 
understanding out of the given word graph. This is also the way 
to separate the effect of a defected word graph from other 
understanding mechanism. First of all, two clusters A,  and C, 
should be used to analyze the acoustic front end module and/or 
reestimate the acoustic models, because A ,  is the set with 
seriously defected word graphs, and the graph search performed 
on utterances in C, are in fact completely correct. Excluding the 
set C,  with completely correct processing, further error analysis 
can be performed on the four clusters of utterances: A,, A,, and B,, 
B,. Two very useful parameters Sa and S, are first defined for each 
utterance as follows: 

where So,, and S,, are the acoustic recognition and language- 
modeling scores for the hypothesis path respectively, and Sa,, and 
S,, are the acoustic recognition and language-modeling scores of 
the reference path respectively. By normalizing with the scores 
for the hypothesis path, the scores Sa and S, represents the 
differences between the hypothesis path and the ‘upper bound’ 
path in terms of the graph search. They have also been 
normalized in such a way that the values of Sa and S, are 
comparable and additive. Using (So ,Si) as the coordinates, each 
utterance in the set A,, A,, B,, B, can be located on an error plane 
as shown in Figure 3. Different types of errors can be easily 
identified by the error regions defined on the error plane in 
Figure 3. Region 3 in Figure 3, for example, is the region 
enclosed by the lines Sa+ S, =O and Sa =0, is the region in which 
the reference path has a better acoustic score (Sa XI), but loses in 
the total score (So + S, 4) due to poor language-modeling score. 
Therefore, the utterances located into region 3 can be used to 
update the language models, etc. In this way, all utterances with 
understanding errors can be properly analyzed, and the real 
source causing each of the errors can be easily identified. It 
should be pointed out that the language models should be 
updated by not only the transcription texts but the reference paths, 
so as to improve the grammar coverage. 

sa = - = - S , h  

Table 1. Understanding rates and slot accuracy for the example 
experiment 
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Table 2. Distributions of hypothesis paths for their respective clusters 

Table 3. Error analysis for the data with n-gram language models 

5. AN EXAMPLE 
The above evaluation and error analysis scheme was applied to a 
train ticket reservation system, which provides the user with a 
spoken dialogue interface in Mandarin Chinese such that the train 
schedule information retrieval and ticket reservation can be easily 
performed with voice. The acoustic front end is a key phrase 
spotter [4] which generates key phrase graphs, while the 
language understanding module includes a hierarchical tag-graph 
search [5], in which the n-gram language models are used and the 
tag sequence with associated parsing trees is generated for 
semantic processing. 391 utterances in 45 real dialogs generated 
by four male and four female speakers were used for the test in 
the development phase of the system. The various understanding 
rates as defined in section 3 together with the slot accuracy for 
the hypothesis paths (with and without language models) and the 
reference paths are shown in Table 1 .  As shown in the table, the 
74.67% reference path slot accuracy constrains the overall 
sentence understanding rate to 80.56%. The improvement of slot 
accuracy for the hypothesis paths by n-gram language models, 
from 68.34% to 71.28%, is not significant because the defected 
word graphs have seriously limited the functions of the language 
models, although the slot accuracy of 71.28% is not too far from 
the ‘upper bound’ of 74.67%. The detailed distributions of all 
utterances in different clusters and corresponding test data are 
shown in Table 2. The n-gram language models, as shown in the 
table, have reduced the numbers of errcm in the clusters A,, A, 
and B,, while increased that in A,. This is because the utterances 
in cluster A3 with seriously destroyed word graphs get no 
benefits from the n-gram constraints. Furthermore, the reduction 
of error sentences in the clusters A,, A, and B, leads to the 
increase of correct and partial understanding sentences in the 
clusters C, and C,. Finally, the sources causing the understanding 
errors with n-gram language models applied are analyzed in 
Table 3. It can be found in Table 3 that in this case 50.77% of the 
understanding errors come from defected word graphs (A3), 
which lead to fa t4  misunderstanding errors, while 34.36% of the 
understanding errors come from imperfect word graphs (C2), 

which are not very serious because the ‘upper bound’ reference 
paths with partial understanding are achieved. The other 14.87% 
of the understanding errors are due to poor acoustic and/or 
language modeling scores. Though no search errors are observed 
in this case, the approach proposed here is able to handle them if 
any search errors are identified. 

6. CONCLUDING REMARKS 
It’s really difficult to evaluate a speech understanding system and 
analyze the different types of errors precisely. The traditional 
metrics developed for speech recognition are helpful but not 
necessarily able to provide a direct insight into the understanding 
mechanism, while the slot accuracy can’t indicate how and why 
the understanding errors occurred. In this paper, a best-matched 
path is derived from a target-given graph search, and a 
framework for performance evaluation and error analysis is 
proposed accordingly. This framework has the potential to 
become powerful tool for the design, analysis and evaluation of 
speech understanding systems. 
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