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ABSTRACT 
In this paper, we propose a closed-form design of the 

generalized maximally flat low-pass FIR filters. By repre- 
senting the transfer function as the Bernstein polynomial 
form, a siniple generating function of the weighting coeffi- 
cients is derived. We show that the linear phase maximally 
flat FIR filters and the nonlinear phase maximally flat half- 
band FIR. filters are both special cases of the proposed filter. 
Closed-form expressions of both linear and nonlinear phase 
maximally flat FIR filters with prescribed degrees of flatness 
and delay can be easily obtained by the proposed method. 

1. INTRODUCTION 

The problem of designing and implementing the maximally 
flat low-pass FIR filters has been studied for a long time. 
In [I], a closed-form expression of the maximally flat lin- 
ear phase low-pass FIR filter was proposed. In [2], another 
closed-form representation of the filter was derived in an- 
other domain rather the z-domain based on a conformal 
mapping. The two closed-forms in [I] and [Z] were identi- 
cal although the structures of filters were different. In [3], 
the authors proposed a method of designing the maximally 
flat FIR filters with arbitrary cutoff frequency. The method 
was basically an improvement of the transformation in [2]. 
In [4], an efficient implementation for the maximally flat 
FIR filter was proposed using a property of the weighting 
coefficients of the filter structure in [I]. There are few and 
small coefficients required in this implementation. In [ 5 ] ,  
the authors showed that the maximally flat FIR filters in 
[ I ,  21 could be also derived using the Bernstein polynomial. 
This provides an insight to  the design of filters. 

A method of designing the nonlinear phase maximally 
flat low-pass FIR filters was studied in (71. The degrees 
of flatness on the magnitude response and the group delay 
could be adjusted independently. Nonlinear equations were 
involved in this method and these equations were solved 
numerically using the Grobner bases. A closed-form design 
of the nonlinear phase half-band maximally flat FIR filters 
was recently proposed in [6] using the Chebyshev polyno- 
mial. Since the half-band filter is a special case of the low- 
pass filter, this map be regarded as a generalization of the 
linear phase filter cases. 

In this paper, we propose a very simple design of the 
generalized maximally flat low-pass FIR filters. By repre- 
senting the transfer function as the Bernstein polynomial 
form, we derive simple generating function of the weight- 
ing coefficients. It is shown that the linear phase maximally 
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flat FIR filters in [I] and the nonlinear phase maximally flat 
half-band FIR filters in [6] are both the special cases of pro- 
posed design. However, the closed-forms of both linear and 
nonlinear phase maximally flat FIR filter with prescribed 
degrees of flatness and delay can be obtained by the pro- 
posed method. 

2. PROBLEM FORMULATION 

An Nth  order FIR filter is characterized by its transfer func- 
tion 

N 

H ( z )  = h(72)z- 
n=O 

where h(n) is the impulse response of the filter. The fre- 
quency response of the filter is expressed by 

which is a complex-valued function. The filter design prob- 
lem is to find the impulse response such that the frequency 
response H(e3")  is approximated to a desired frequency re- 
sponse f & ( ~ ) .  Since we want to design a low-pass filter 
with arbitrary delay, the desired frequency response can be 
written as 

where r ,  wp and ws denote the desired delay, the passband 
edge, and the stopband edge, respectively. The designed. 
FIR filter is said to be maximally flat if 

f o r u = O , l ,  ..., P - l , a n d ,  

Iw=O (4') 

for w = 0,1, . . . , Q - 1; where P and Q represent the degrees 
of flatness a t  w = 0 and w = a, respectively. Since there are 
N+ 1 unknowns to be determined by the P+Q equations in 
Eqs. (4) and ( 5 ) ,  we obtain the following relation between 
P ,  Q and N 

N = P +  Q - 1. ((j) 



In order to  solve the impulse response of the maxi- 
mally flat low-pass filter, we substitute the frequency re- 
sponse H(e'") in Eq. ( 2 )  and the desired frequency response 
&(e3") in Eq. (3) for those in Eqs. (4) and (5). These 
equations can be simplified and expressed as 

N 

h(n)nY = ru, f o r u = O , l , . . : ,  P - 1 ,  (7)  
/ 

n=O 

and 

N 

h(n)n'(-l)" = 0, for w = O , l , .  . . , Q - 1. (8) 
TL=O / 

We can express the P + Q equations of Eqs. (7) and (8) in 
matrix form as follow 

where 

A =  

. ~ .  

A x = b  (9) 
/ 

. . .  1 1  1 1 
0 1  2 3 
0 1  4 9 

0 1 2p-1 3-1 ... 
1 -1 -1- -1 ... 

-0. -1 2 -3 ... 
0 -1 4 -9 

... 

. . .  
. . . - - - - - .  . .  . . .  . 

... 

1 
N 
N 2  

NP- 1 

N( - l )N  
N'(-l)N 

NQ-' ( - l )N 

- -  
-x= [h(O), W), h(2),  ' ' .  7 h(N) l t ,  

and 
Q zeros 

b = [l, 7, r2,  . . . , ~ ~ - ' , 6 ~ ~ - $ .  
The superscript denotes the matrix transpose. 

, 

Although the impulse response of the maximally flat 
FIR filter can be obtained by solving Eq. (9), there are 
some drawbacks to solve these equations directly. First, A 
is ill-conditioned when N is large. That is, the numerical so- 
lution may be not accurate if Eq. (9) is solved by numerical 
software. Secondly, even if the numerical solution is solved 
accurately, it cannot reveal explicitly the properties of the 
impulse response or the structure of the filter. We may ob- 
tain deeper properties or structure of the filter if we know 
the closed-form expression of impulse response. However, 
it is difficult to calculate the closed-form solution directly 
from Eqs. ( 7 )  and (8), or equivalent, Eq. (9). Therefore, 
to obtain the closed-form solution, we will design the fil- 
ter by another approach rather than solving the equations 
directly. 

3. CLOSED-FORM DESIGN BY GENERATING 
FUNCTION 

In order to obtain the closed-form expression of the transfer 
function, we use the Bernstein form of the transfer function 

expressed by 

Since H ( z )  has Q zeros at z = -1 ,  i.e., w = n, we can set 

c ( P ) = c ( P + l )  = . . . = c ( N ) = O  . (11) 

Accordingly, the transfer function is written by 

P-1 

H ( z )  = c ( m )  ( * ) m  ( -1-) 1 + 2-1 N - m .  (12) 
m=O 

The fundamental difference between Eqs. (1) and ( 1 2 )  is 
that the latter has desired degree of flatness a t  w = n struc- 
turally. Now, the problem of designing the FIR low-pass 
filter is to  find the coefficients c(O), c ( l ) ,  . . . , c(P - 1) such 
that the following approximation is achieved 

H ( z )  z5 z-* (13) 

where z - ~  is the desired transfer function in the passband. 
To solve c(O), c ( l ) ,  . . . , c(P - l), we make the following 

variable chanEe 

Substituting Eqs. (12)  and (14) for Eq. (13), we obtain the 
following approximation 

m=O 

or 
P-  1 

c(m) tm R5 (1 - t ) ' ( l  + t y - 7 .  ( 1 5 )  
m = O  

Therefore, the coefficients c(O), c(l), . . . , c(P  - 1) is the first 
P coefficients in ( l - t ) T ( l + t ) N - T  if we expand it into power 
series. We may regard (1 - t ) T ( l  + t )N- r  as the generating 
function of the coefficients. 

Property 1. The coeficient generating function of the 
Bernstein-type transfer function of Nth order maximally 
flat low-pass FIR filter with desired delay r i s  

(16) G(t )  = (1 - t)'(l +t)N- ' .  

If the desired delay r is an integer, the generating func- 
tion expressed by Eq. (16) has only finite terms, and the 
coefficients c(O), c ( l ) ,  . . . , c(P - 1 )  has the following simple 
closed-form expression 

m 

c(m> = ~ ( - 1 ) '  ( i )  ( m--2 - 7 )  (17) 
i = O  

for m = 0,1 , .  . . , P -  1 where ( 5 )  is the binomial coefficient. 
However, if the desired delay T is not an integer, the power 
series expansion of the generating contains infinite terms. 
Based on the well-known power series 

k=O 
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the coefficients c(0), c(l), . . . , c(P - I)  could be expressed 
bY 

m 
(7 - i + l)i ( N  - 7 - m+ i + 1 ) w  

c(m) = c(-l)i Z! (m - i)! 

for m = 0, I,. . . , P - 1 where ( a ) k  is defined by 

i=O 
(18) 

( a ) k  = a(a + 1). . . ( a  + k - 1) 

for k 2 1 and ( a ) ~  = 1. 
It is interesting that the generating function expressed 

by Eq. (16) is independent from the degree of flatness P 
or Q. That is, for a fixed filter order N ,  the coefficients of 
the Bernstein-type transfer function are identical even if the 
degrees of flatness are different. What controls the degree 
of flatness is the structure of the filter and the number of 
the coefficient rather than the values of the coefficients. 

4. RELATIONS TO SOME WELL-KNOWN 
MAXIMALLY FLAT FILTERS 

In this section, we will investigate the relationship between 
the proposed low-pass FIR filter and two well-known max- 
imally flat FIR filters. We will show that these two filters 
are special cases of the proposed filters. 

4.1. RELATION TO LINEAR-PHASE FIR FIL- 
TERS 

In [l], the author derived the closed-form expression of the 
maximally flat linear-phase low-pass filter. In [2], another 
closed-form expression of the filter was derived based on a 
conformal mapping which is identical to change the pro- 
posed variable. The filter derived in [2] was equivalent to 
the one in [l]. We will show that the linear-phase filter is a 
special case of the proposed filter. 

For the linear-phase FIR filter, the desired delay is a 
half of the filter order. However, to obtain an integer de- 
lay, N has to  be an even number. Substituting N = 27- 
for Eq. (16), we obtain the generating function of the max- 
imally flat linear phase FIR low-pass filter as follows 

Gip( t )  = (1 - t 2 )T  (19) 
That is, the coefficients in the Bernstein-type transfer func- 
tion are 

(20) c(m)  = { :;I)"'( for even m 
otherwise 

for m = 0,1,. . . , P - 1. Substituting Eq. (20), P - 1 = 
27- - 2 K  nd N = 27 for Eq. (12), we obtain the following 
transfer function 

. .  

(21) 
where P - 1 = 27 - 2K, i.e., Q = 2K, is the degree of 
flatness a t  w = 7r specified in [l, 21. Since the transfer 
function Hjp(z)  in Eq. (21) is identical to the one given in 
121, we conclude that the well-known maximally flat low- 
pass FIR filter is a special cme of the proposed filter. 

4.2. RELATION TO GENERALIZED HALF-BAND 
FIR FILTERS 

In [6], an expression of +e generalized half-band maximally 
flat FIR filters was derived based on relating the frequency 
response of the filter to the Chebyshev polynomial. An 
closed-form representation of the Bernstein-type transfer 
function was also obtained. We will show that the result 
in [6] is also a special i F e  of the proposed filter. For the 
specifications in [6], we have 

N = 2M, 7 = M +'d, and Q = M + 1. 

Substituting these specifications'fo; Eq. (16);we obtain the 
following generating function_forthe maximally flat half- 
band FIR filters 

Gh~,(t) = (1 -,t)',+d(lk t ) M - d .  (22) 
\ 

In [6], the Bernstein form of the transfk: function is defined 
by 

where the coefficients b ( i )  and our csfficients c ( m )  is re: 
lated bv 

It is easy to show that --- 

c ( ~  - i )  = ( - ~ ) * ~ + ~ ~ ( i )  

if c ( i )  is the coefficients in Eq. (22). Therefore, 

which is identical to the coefficients given in [6]. Conse- 
quently, the generalized maximally flat half-band FIR filter 
is a special case of the proposed filter. 

5. DESIGN EXAMPLES 

In this section, there are several design examples using the 
proposed design method. 

Example 1. In this example, the maximally flat 10th 
order half-band FIR filters are to be designed. The degrees 
of flatness are P = 6 and Q = 5 and the desired delay is 
7 = 5. The generating function is G h b ( t )  = (1 - t2)5 and 
its first P coefficients are (1, 0, -5, 0, 10, 0). Therefore, the 
Bernstein-type transfer function is H ( z )  = (-)lo - 

ing and combining the above function into a polynomial in 
z - l ,  we obtain the impulse response of (31512, -251512, 

Example 2. In this example, the maximally flat 20th 
order low-pass FIR filters are to  be designed. The degrees 
of flatness are P = 10 and Q = 11, respectively. The desired 
delays are T = 9,9.5,10,10.5,11, respectively. Fig. l(a) and 
(b) show the magnitude responses and their group delays, 

5(&2-+)2(l32-$)* + 10 (7) I -z-1 4 (7) 1+*-1 6 . After expand- 

751256, 112, 751256, -251512, 31512). 

',, 
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respectively. Note that two amplitude curves of r = 9.5 and 
T = 10.5 are exactly the same. The straight line for P = 
9.5, 10 and 10.5 in Fig. l(b) indicates that the associated 
frequency response is of linear phase. Fig. l(c) shows the 
zero plots of the corresponding transfer function. 

Example 3. We will design the maximally flat 20th or- 
der low-pass FIR filters. The degrees of flatness are P = 7 
and Q = 14, respectively. The desired delays are r = 
9,9.5,10,10.5,11, respectively. Fig. 2(a) shows the magni- 
tude responses and Fig. 2(b) shows the their group delays. 
Note that two amplitude curves of T = 9.5 and r = 10.5 
are the same. The straight line for r = 10 in Fig. 2(b) in- 
dicates that the associated frequency response is of linear 
phase. Fig. 2(c) shows the zero plots of the corresponding 
transfer function. 

6. CONCLUSIONS 

In this paper, we proposed a closed-form design of the gen- 
eralized maximally flat low-pass FIR filters. A simple gen- 
erating function of the weighting coefficients was derived if 
the transfer function was expressed by the Bernstein poly- 
nomial form. The generating function is a function of the 
filter order and the desired delay. If the desired delay is 
an integer, the generating function is a simple polynomial. 
This means that the coefficients can be evaluated easily. 
We showed that some maximally flat low-pass FIR filters 
are special cases of proposed filter. Closed-form expressions 
of both linear and nonlinear phase maximally flat FIR filters 
with prescribed degrees of flatness and delay are obtained 
by the proposed method. Several examples were provided 
to  demonstrate the effectiveness for the proposed design. 
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Figure 1: Design of the maximally flat 10th order low-pass 
FIR filters The degrees of flatness are P = 10 and Q = 11. 
The desired delays are r = 9,9.5,10,10.5,11, respectively. 
(a) Magnitude responses, (b) group delays and (c) zero plot. 
‘u.c.’ stands for the unit circle. 
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Figure 2: Design of the maximally flat 10th order low-pass 
FIR filters The degrees of flatness are P = 7 and Q = 14. 
The desired delays are T = 9,9.5,10,10.5,11, respectively. 
(a) Magnitude responses, (b) group delays and ( c )  zero plot. 
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