Performance Control and Purchase Order Management on Electronic Commerce
NSC 87-2213-E-002-102

86

8

1

g7 7 31

(E-Mail: yen@cc.ee.ntu.edu.tw)

(locality)

Abstract

Electronic commerce on the Internet isa
future trend of the daily transaction. More
and more el ectronic commerce systems on
the Internet are proposed by corporations.
Since the dispersion of sites of corporations,
consumers spend much of time to search
different sites for comparing the products.
Furthermore, the security systems of different
corporations are inconsistent. These cause the
inconvenience of al the consumers,
merchants, and banks. So, integrated
el ectronic commerce systems on the Internet
are more and more popular, as supermarkets
and malls replace the traditional shops.

In recently years, the Internet has
become ubiquitous. The size of the network
grows quickly and a tremendous amount of
data flows on the Internet at any time during
the day. Therefore, how to place data in the
network to reduce the traffic load, which in

turn increases the utilization, is an important
issue. We design severa mechanisms to
decide the best location at which data are
stored in the network. To this end, we take
advantage of many concepts and designs
originated in, for example, the list update
problem, the k-server problem and the paging
problem. We aso simulate these algorithms
in order to analyze their performances. In our
simulation, we study the behaviors of data
accesses and movements among servers in a
mesh network

Keywords. Electronic commerce, Internet,
the server problem, simulation.

In recently years, computer networks
have become ubiquitous, and consequently,
the research in this area is full of vitality.
Million of people connect their computers by
an immense network, namely the Internet.
Using the Internet, people communicate with
each other by sending e-mail or conducting in
video-conferencing. Because more and more
people are connected to the Internet. The size
of the network grows quickly and a
tremendous amount of data flows on the
Internet at any time during the day. Therefore,
how to place data in the network to reduce
the traffic load which in turn increases the
utilization is an important issue, which has a
profound impact on the efficiency of the
network.

There are many services provided by a
variety of serversin the Internet. If one server
provides popular data in the network and
many users want to access it in particular
when there is only one copy of the datum [12,
14], it is important to decide which server to
store the data in order to reduce the total
access cost. Such a server-related problem is
going to be studied in depth in this thesis.

We design severa mechanisms to
decide the best location at which data are
stored in the network [3, 4, 6, 10, 13]. To
this end, we take advantage of many concepts
and designs originated in, for example, the
list update problem, the k-server problem and

the paging problem. Many algorithms for
these problems have been proposed in the
literature [2, 3, 4, 6, 8, 10, 11]. Among them
are the Move to Front, Transpose, Move to
Middle, BIT, BIT and Move to Middle
heuristics, for example. Since the server
problem in real networks is much more
complicated than the simplified k-server, list
update and paging problems, it is very
difficult to solve the server problem
anaytically. As a result, resorting to
simulation in the analysis of the “ general”
server problem seemsto be inevitable.

In our simulation, we study the
behaviors of data accesses and movements
among servers in a mesh network. In
comparison with ring and star topologies
commonly seen in local area networks,
meshes represent an architecture which is
much more different to analyze. Hopefully,
the experiences and results learned from
studying meshes will alow us to better
understand the more complicated behaviors
encountered in general network.

We assume that our system topology is
an n” m mesh and each crossing point in the
mesh, as shown in Fig.1.

* —o—0 o0 o
*—o—0—0 0o

" —o—0—0 0o

" —0—0—0—0 90

Fig.1 Mesh topology

There are two types of costs, namely
access cost and move cost, in the cost model
of our smulation. When server A wants
server B to serve a request, server A first
finds where the data is. After the access of
the data is completed, one has to decide
which server, server A or another server, is
going to store the data. The cost involved in
first step is mainly the access cost and the
second step is concerned with the move

cost. Both access cost and move cost are
defined by the distance between the two
servers involved. The exchange cost has two
kinds of modes. free exchange and paid
exchange in the list update problem. The
exchange cost in the free exchange mode is
zero; others are paid exchanges. Such a
classification, however, it is not appropriate
in our network because data transmission
between servers involves not only access cost
but also move cost. So move cost is not free
in network and we should not ignore it. But
some move operations can be done when
network flow is not heavy. For example, less
frequently used data can be moved in the
night or on holidays if they are accessed only
one time. So we can define severa kinds of
mode to give different weights to access cost
and move cost.

Server request sequences and data
request sequences are two important factors
in the simulation. A server request sequence
indicates which server issues request in each
time step. A data request sequence indicates
which datais used in each time step. We give
severa Situations that are of interest in
practice. We have three kinds of sever
request sequences:

(A). All servers have the same service
frequency.
(B). Some servers are accessed more
frequently than others.

(C). Accesses are carried out randomly.

The data request sequence is also an
important factor in our simulation. It
specifies the data to be accessed in each time
step. We consider five types of data request

sequences.
1 All items in the data request sequence
are the same.

I The data request sequence contains two
kinds of items and both have the same
weight.

I The data request sequence contains two
kinds of items with different weight.

I Fixed amount of data occupies the mgor
part of the access sequence.

I 80% accessesis selected from 20% data.

In the system we use five algorithms to
simulate the one-server problem and three
algorithms to simulate the two-server
problem. In the two-server problem
simulation, each datum has two copies in the
network and any pair of data will not be in
the same server. The five algorithms used for
the one-server problem are Move to Front,
Transpose, Move to Middle, Bit, and Bit and
Moveto Middle. The agorithms for the
two-server problem are Balance, Greedy and
harmonic.

In our ssimulation, we give two different
topologies for comparing their performances
with respect to a variety of algorithms. Mode
1 is a 40 40 mesh and mode 2 is a 20" 40
mesh, as shown in Fig. 11 and Fig. 12,
respectively. Each mode contains some
properties about the underlying network
topology. Table 1 is the related parameters
about two modes in the one-server simulation
environment. Table 2 is the related
parameters in the two-server simulation
environment.

Both in the one-server and the two-
server simulations, the width, the length, the
number of servers, and the number of data
types are al the same. They only differ in the
number of data and the cache size. The two-
server simulation gives each data two copies
in the network and one-server mode only
contains one copy. Therefore, all servers need
double cache size in the two-server
simulation. Furthermore, we initialize that
the same data are set in different servers in
the two-server simulation.

Model |Mode2
Width 40 20
Length 40 40
Number of server |1600 800
Number of data |6400 6400
Data type 6400 6400
Cache size 4 8

Table 1 Parameters in the one-Server
simulation.

Model | Mode2
Width 40 20
Length 40 40
Number of server| 1600 800
Number of data 12800 12800
Data type 6400 6400
Cache size 8 16

Table 2 Parameters in the two-server
simulation.

Some of our simulation results for the
two-server case are shown below.

50
40
30
20
10

Total Cost

NM GRD HAR BAL

‘I:IAccess Cost @ Move Cost ‘

Fig. 2 Server generation rule A

Data generation rule A

40
30
20
10

0

Total Cost

NM GRD HAR BAL

‘I:IAccess Cost @Move Cost‘

Fig. 3 Server generation rule A
Data generation rule B

40
30
20
10

Total Cost

NM GRD HAR BAL

O Access Cost @Move Cost ‘

Fig.4 Server generation rule A
Data generation rule C

Fig. 2 is the simulation results of rule A of
the data request sequence generation rules.
Greedy performs better than others in free
exchange mode and paid exchange mode. It
improves on NM 60.36% in free exchange
mode and 18.22% in paid exchange mode.
Fig. 3 and Fig. 4 have the same results with
Fig. 2. In Fig. 29, Greedy improves on NM
60.2% in free exchange mode and 20.4% in
paid exchange mode. In Fig. 4, it improves
on NM 60.78% in free exchange mode and
21.56% in paid exchange mode improves.
From our simulation result, if data access has
higher degree of locality, Greedy can get
more advantage.

In this research, we have introduced
several algorithms to make decisions about
where to put the data after accessing in a
network for the purpose of decreasing future
access cost. These agorithms come from
three well-known on-line problems, namely
the list update problem, the k-server problem
and the paging problem, which are related to
electronic commerce. We have aso
simulated these agorithms in order to
anayze their performances.

Because the previous electronic
commerce systems on the Internet are small
and local, few systems consider the
performance control issues. As the
integrated electronic commerce systems on
the Internet are popular, the consideration of
performance control studied in this research
will be helpful for enhancing the system
performance.

1 A.R. Karlin, M. S. Mamasse, L. Rudolph and D.
D. Sleator, Competitive snoopy caching,
Algorithmica 3 (1988) 79-119.

2. A. R. Calderbank, E. G. Coffman, and L. Flatto,
Sequencing problems in two-server systems,

Math. Oper. Res. 10, NO 4 (1985), 585-598.

J. H. Hester and D. S. Hirschberg, Self-
organizing linear search, ACM Computing
Surveys, Vol. 17, No.3, Sep. (1985),295-311.

S. Irani, N. Reingold, J. Westbrook, and D. D.
Sleator, Randomized competitive algorithms for
the list update problem, Algorithmica 11 (1994)
15-32.

P. Raghavan and M. Snir, Memory versus
randomization in on-line algorithms, Proc.
ICALP 88, Lecture Notes in Computer Science,
Vol. 372(1988) 687-703.

M. Chrobak and L. L. Larmore, HARMONIC is
3-competitive for two servers, Theoretical
Computer Science 98 (1992) 339-346.

A. CALDERBANK, E. G. COFFMAN, and L.
FLATTO, Sequencing problems on a sphere,
Commun. Statist. —Stochastic Models 1, NO 1
(1985), 17-18.

R. RIVEST, On sdf-organizing sequential
search heuristics. Commun. ACM 19, 2
(1976) ,63-67.

D. Knuth, A “self-organization” file, In The Art
of Computer Programming, Memory versus
randomization in on-line agorithm, Vol. 3
(1973), 398-399.

10.

11.

12.

13.

14.

15.

16.

M. S. Manasse, L. A. McGeoch and D. D.
Sleator, Competitive algorithms for server
problems, Journal of Algorithms 11 (1990),
208-230.

M. Chrobak, H. Karloff, T. Payne and S.
Vishwanathan, New results on server problems,
Proc. 1% Annual ACM-SIAM Symp. on Disc.
Algo. (1990).

M. Taylor, Building an architecture for
multiservice networks, Tele-communications
(International Edition) 30, 7, (1996).

D. W. Brubeck and L. A. Rowe, Hierarchical
Storage Management in a Distributed VOD
System, IEEE Multimedia 3, 3, (Fall, 1996) 37-
47.

S. Venkataraman, M. Livny, and J. F. Naughton,
Memory Management for Sca;able Web Data
Servers, Proceedings of |EEE 12" International
Conference on Data Engineering. (1997).

A. Silberschatz, P. Galvin, Operating system
concepts, 4th ed., Addison-Wesley, (1994).

A. Tanenbaum, Computer networks, 3rd
ed. ,Prentice Hall International, (1996).

	page1
	page2
	page3
	page4
	page5
	page6

