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An automatic spike detection algorithm for
classification of multi-channel
electroencephalographic (EEG) signals based on
artificial neural network is presented. Radial
basis function (RBF) neural network was chosen
for single channel recognition, with model
optimization using receiver ° operating
characteristics analysis. Waveform
simplification was employed for high noise
immunity. Feature extraction with as few as
three parameters was used as preparation for the
inputs to the neural network. Identification of
multi-channel  geometric  correlation  was
performed to further lower the false-positive rate
by using an incidence matrix. Threshold value
for spike classification was chosen for
simultaneous  maximization of  detection
sensitivity and selectivity.  Evaluation with
visual analysis in this preliminary study showed a
83% sensitivity using 16-channel continuous
EEG records of four patients, while a high false
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positive rate was found, which was believed to
arise from the extensive and exhaustive visual
analysis process.
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The EEG spikes are thought of as a cardinal
medical sign of epilepsy [1], a detailed diagnosis
of which usually demands a long-term continuous
EEG monitoring. However, a long-term EEG
recording generates a large amount of relatively
normal but clinically useless data [2].
Consequently, there has been an increasing
interest in the development of computer-based
automat.c spike detection algorithms which
would be helpful in facilitating the objective
evaluatinn of diagnostic information.

Spike detection algorithms based on
computer automation have achieved various
levels of success [3-6], but there leaves ample
room fcr improvement in terms of sensitivity,
specificity, and speed. Rule-based methods [3-
4] for recognizing special features of spike
waveforns have achieved a high true-positive
rate but as well as a high false positive rate [5].
One of the major problems leading to false spike
recognit on in rule-based methods lies in the fact
that there is no clear definition of a spike [2].
As a result, the artificial neural network (ANN)
technique for spike detection, which simulates
the human reasoning process, has demonstrated
strong potential since it was presented [5-6].

In this work, an automatic multi-channel
spike detection algorithm based on a modified
radial basis function (RBF) ANN architecture is
presentel. Feature extraction with as few as
three  parameters was implemented for



simplification in training of the neural network as
well as for performance efficiency. Individual
classification results obtained from separate
channels were sent to an incidence matrix to
include geometric consideration of location of the
electrical discharging sources, which effectively
avoided the disadvantages of possible low
specificity in single-channel recognition.
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Figure 1 describes the block diagram of the
entire system for multi-channel spike detection.
Sixteen-channel unipolar EEG data were used
with electrodes positioned according to the
international 10/20 system. Note that the EEG
signal from each individual channel was analyzed
for presence of spikes through separate
classification process. Waveform simplification
[7] was first applied to the original EEG signals
for noise immunity. Background activity was
taken into account to highlight possible spike
waveform [7]. Three parameters (peak angle,
amplitude and velocity) [8] were consequently
extracted from the cleaned waveform and were
fed to the input of the neural network for single-
channel spike detection. The classification
results from individual channels were then sent to
an incidence matrix for identification of multi-
channel geometric correlation. The results of
classification were shown on the screen
graphically with spikes marked out using
different colors than the nonepileptic background.

Tte architecture of the RBF neural network
for single-channel spike detection is shown in
Figure 2.  The calculation of peak angle,
amplitude, and velocity (i.e., slope) from the
simplified EEG waveform was performed
accordiig to the definitions in Ref.[8] with
voltage gain and chart speed properly adjusted.
These rarameters were then used as the inputs to
the RBI neural network. The resulting structure
thus hed only five cells in the hidden layer,
permitting very high speed operation and
relative y little training needed for optimization
of the network model. Ten EEG spikes and ten
nonepil:ptic EEG waveforms were used as the
training data of the RBF neural network. In this
preliminary study, three different models were
evaluated, with the optimal one chosen by using
receiver operating characteristics (ROC) analysis.

Detection results from a single-channel RBF
network contained a number ranging mostly from
-1.0 to 1.0 for each data segment 330 msec in
length. A threshold classifier was then applied
for decision of the classification process. The
optimal threshold value was <chosen to
simultaneously maximize the detection sensitivity
and selectivity [9]. For each time segment, the
waveform with a number from the RBF network
output larger than the threshold value was
regarded as a spike. A “1” was hence assigned
for suca a waveform, otherwise a “0” was
assignec. The single-channel classification is
thus accomplished.
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Fig. 2. The architecture of the RBF neural
network with three parameters as the input.

Finally, the concept of the incidence
matrix was employed to include identification
of multi-channel geometric  correlation.
Assuming the epileptic spikes are from a
discharging source at a specific location in the
cortex, the appearance of spikes in unipolar
recordings  should possess  geometrical
correlation in that spikes tend to be grouped in
neighboring channels. The identification of
such a correlation was achieved by feeding the
single-channel classification results as a 1x16
row vector to a 16x12 incidence matrix given
below:
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where each column of the matrix represents
each of the twelve geometrical adjacency as
shown in Figure 3. It is to be noted that each
adjacency contains its neighboring channels in
which spikes are expected if a discharging
source is located within that certain region.
Therefore, a multiplication of the 1x16 row
vector obtained from the 16 RBF networks by
the incidence matrix yielded a 1x12 row vector,
in which each element is a number representing
the likelithood of the discharging location for
the spikes. If any one of the 12 elements
ylelded a number equal to the number of
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channels belonging to the corresponding
colurin, spikes were found in all channels
geomretrically close to the source location. A
real spike was thus declared to be found.
Through such an operation, false detection of
eye-tlinks as single-channel spikes would be
eliminated, thereby reducing false-positive
ident fication rate.

Fig. 3. The twelve adjacency used for
identification of geometrical correlation.
Each column in the incidence matrix represents
the channels in which spikes are expected if a
dischiarging source is located within that
region.
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On ctoice of neural network models

The choice of neural network parameters were
evaluiated by comparing the ROC curves of
three models of the RBF network. The
mode s differed in the fact that the spikes used
for training the neural network were different.
In ouwr first model, spikes with typical (within
mean +/- one standard deviation) peak angle,
ampli:ude, and velocity values were selected as
the training data. This has the advantage of
minimizing the number of false detection,
while with drawback of missing spikes with
less representative feature parameters. Figure
4 shows the ROC curves plotted as detection
sensit vity versus (l-specificity) varied as a
function of threshold values. Model 1 was
showr. to exhibit high specificity but relatively
low sensitivity, as expected. For comparison
purpose, a second model using training data



with feature parameters falling outside (mean
+/- std) was constructed. The ROC curve of
mode! 2 as shown in Figure 4 demonstrated the
opposite trend with low specificity, as the RBF
network tended to give false identification.
Model 3, obtained wusing training data
consisting of wide spread of but centered at
mean values of feature parameters, was
therefore chosen. The ROC curve in Figure 4
clearly showed that model 3 had the best
performance. It was thus chosen as the model

for single-channel spike detection.
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Fig. 4. ROC curves for the choice of optimal
RBF neural network model.

On choice of the threshold value

Figure 5 shows the crossover curve for model 3
of the RBF network. A threshold of 0.5 was
found to be the crossover point which yields
high sensitivity and specificity simultaneously
[9]. In our study, a threshold of 0.4 was
chosen because of higher sensitivity with no
loss in specificity compared with the threshold
of 0.5. ;

Fig. 5. Crossover curve for choosing the
threshold value using model 3 of Figure 4.

On the performance of the proposed algorithm

Sixteen-channel continuous EEG records from
four petients were used in the preliminary study
for evaluation of the spike detection algorithm.
Each r:cord was about two minutes in length.
The algorithm analyzed the EEG signals in 330
msec time segments, following which an
incremant of 150 msec was added and the new
time segment analyzed. On a PC system the
compuation time for spike detection was
found to be significantly lower than that
required for online display of the EEG signals.
With -validation by visual analysis by one
experienced neural physician, 91 out of 110
spikes were detected, yielding a sensitivity of
83%.

A~ FE K

[1] G. Bodenstein et al. Proc IEEE, 65: 642,
1977.

[2] J. Gotman et al. in The Treatment of
Epilepsy:  Principles and  Practice,
Williams & Wilkins, 1996, 280-291.

[3] J. Gotman et al. Electroenceph Clin
Neurophys, 83:12, 1992,

(4] F. Pauri et al. Electroenceph Clin
Neurophys, 82: 1, 1992,

[5] W.R.S. Webber et al. Electroenceph Clin
Neurophys, ,91: 194, 1994,

[6] A.. Gabor et al. Electroenceph Clin
Neurophys 99: 257, 1996.

[7] J. Gotman et al. Electroenceph Clin
Neurophys 41, 513, 1976.

[8] K.A. Kooi Neurolog, 16: 59, 1966.

(9] WRS Webber et al FElectroenceph Clin
Neurophys 87: 364, 1993.



