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Abstract -

For customizing services to suit the
individual preferences of users, we propose

strategy that interpret and learn about users'

preferences, and schedule programs . Many
multimedia applications such teleconferencing,
medical imaging , and distance education  will
demand networks to store and forward a  large
amount of data by an intelligent management
system. The data must be processed in real

time, and distributed to the end users or clients
who are The
intelligent system control mechanism needs to

control how to transmit the data from a source

separated geographically.

server to different requests of viewing times

of individual users in different local servers.

The most popular solutionto support the
multimedia application
multicast routing algorithm for
multicast trees, since the data can be

to different destinations

transmission uses the

constructing
transmit-
ed in parallel along

the paths of the tree , and a minimal number

of copies of the data needed to be cached or
transmitted.
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Orthogonal and Straight-Line Drawings of
Graphs with Succinct Representations*

Ho-Lin Chen and Hsu-Chun Yen

Dept. of Electrical Engineering, National Taiwan University
Taipei, Taiwan, R. O. C.
yenQcc.ee.ntu.edu.tw

The concept of a hierarchical design has played an important role in various
areas of computer science and engineering, including software engineering, CAD,
among others. Graphs with hierarchical structures, which are capable of descri-
bing large-scale regular structures in a succinct manner, have naturally become
an interesting and important modeling tool for facilitating such a hierarchical
design. In the literature, a number of succinct models for representing graphs
with hierarchical structures have been proposed. See, e.g., [4,5]. In each of such
hierarchical graph models, a succinct description is capable of representing a
graph (which can be thought of as the expansion of the description) whose size
is exponential in the length of the description.

A hierarchical graph [4,5] I' = (G, ..., Gi) of depth k contains k cells Gy, ..., Gk,
each of which is a graph consisting of two types of vertices, namely, terminals
and nonterminals. Intuitively speaking, nonterminals are those that are going
to be replaced by cells of smaller indices during the expansion process. Suppose
G; = (Vi, E;),1 <1 < k, where V; and E; are the sets of vertices and edges of G,
respectively. For each G, there is a pin assignment function p; : {1,...,d;} = V;
(where d; is a positive integer), which specifies the way vertices are connected
to the upper layer. The d; is called the degree of G;, and each of the vertices in
pi({1,...,d;}) is called a frontier vertex (f-vertez, for short). Each nonterminal
inside G} is specified as (m, G;) where m (an integer) represents the unique name
of the nonterminal, and G, 1 < j < %, denotes the type of the nonterminal. A
nonterminal of type G; has degree d;, and each incident edge is labeled by a
unique integer in {1, ...,d;}. The expansion of G;, denoted by E(G}), is obtained
by expanding all of its subcells G4y, ..., G;_1 recursively, and then replacing each
nonterminal of type G; (1 < j < 4) inside G; by a copy of E(G;) in such a
way that each incident edge labeled [ (1 <[ < d;) is connected to the f-vertex
p;(1). The expansion of a hierarchical graph I' = (G, ..., Gx), denoted by E(I),
is defined to be F(Gy).

In this research, our goal is to ‘draw’ hierarchical planar graphs on grids in
the styles of straight-line drawing (i.e., each edge is a straight-line segment) and
orthogonal drawing (i.e., each edge is a chain of horizontal and vertical segments)
[2]. Since the size of the expansion of a hierarchical graph can be exponential
in the length of its succinct representation, care must be taken when defining

* This work was supported in part by the National Science Council of the Republic of
China under Grant NSC-88-2815-C-002-002-E.

J. Kratochvil (Ed.): GD’99, LNCS 1731, pp. 416-417, 1999,
© Springer-Verlag Berlin Heidelberg 1999
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the output of a graph drawing algorithm. In our setting, the outputs of our
drawing algorithms are succinct representations of drawings and not of drawings
themselves. (That is, we require that the drawing of a hierarchical graph be
expressible succinctly as well.) To this end, the drawings of two copies of the
same cell must be ‘identical’ in the sense that one drawing can be obtained by
the operations of flipping with respect to the y-axis and/or rotations of 90°, 180°
or 270° from the other. A hierarchical graph is said to have a planar straight-
line (resp., orthogonal) grid drawing if its expansion can be drawn on grids
in a straight-line (resp., orthogonal) fashion without edge crossings subject to
the above constraints regarding copies of each cell. It should be noted that our
hierarchical graph model differs from that of ‘hierarchical graphs’ used in, e.g.,
[3]. The latter refers to graphs whose vertices are assigned to layers, and the
so-called ‘hierarchical drawing’ is to place all the vertices of a hierarchical graph
on a set of equally-spaced horizontal lines.

The main contributions of this paper include the design and analysis of or-
thogonal and straight-line drawing algorithms which operate on the succinct
descriptions of hierarchical graphs directly, and output succinct representations
of drawings. (For related results, the reader is referred to [1].) We do not require
that the hierarchical graphs be expanded in order for our algorithms to work.
To the best of our knowledge, conventional graph drawing algorithms operate
only on completely specified graphs. For hierarchical graphs (G, ...,G) with
the number of outgoing connections in each G; bounded by 2, we derive a pla-
nar straight-line grid drawing algorithm which runs in time Z,’;:l |G;|, where

|G;| denotes the number of vertices in G;. (Notice that Zle |G| is linear in the
size of the succinct representation.) The drawing area of the expanded graph is

bounded by O(23% Hle (IG;| —2)%). For orthogonal grid drawings of hierarchical
planar graphs, we present an algorithm which runs in O(Zle |G;|?) time, pro-
vided that the input graph is 2-connected (i.e., a graph which remains connected
even if a single vertex is removed). The drawing area and the total number of
bends of the expanded graph are bounded by O(n?) and (mawx;=1, _x{|G:|})¥,
respectively, where n is the number of vertices in the expanded graph. Our al-
gorithm can also be used to report whether the input graph exhibits a planar
straight-line (or orthogonal) grid drawing.
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