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ABSTRACT 

This paper develops, by using advanced optimization 
methods, a production scheduling algorithm for discrete-part, 
make-twrder type of flexible flow shops. The goal of 
scheduling is to meet due dates and the problem is 
formulated as a large-scale integer programming problem. 
Our scheduling algorithm includes four parts : decomposition 
by Lagrangian relaxation into subproblems, the minimum 
cost linear network flow algorithm for solving subproblems, 
a subgradient algorithm for solving the dual problem, and a 
heuristic to obtain a near-optimal and feasible schedule. The 
algorithm is then compared with a heuristic rule that is 
considered effective by some local manufacturing firms. 
Preliminary results show that our scheduling algorithm not 
only is better in optimality but also provides more insights 
into scheduling complicated operations. 

I. INTRODUCTION 

Production scheduling is one of the most important 
issues in shop floor control of a manufacturing firm. 
Although there have been numerous researches on this topic 
in the literature [4], there are needs for new concepts and 
advanced techniques to schedule manufacturing operations as 
many new technologies have been developed and installed in 
manufacturing firms today [7]. In this paper, we consider a 
make-twrder flow shop which manufactures discrete parts 
of different types. Each type of parts have its own due date 
and desired quantity. Machine groups of limited processing 
capacities with infinite intermediate buffer sizes are used to 
manufacture these parts. Each machine group consists of 
homogeneous machines. There is one production process 
associated with each part type which consists of a sequence 
of operations requiring different machining facilities. 
However, different part types may have processin operations 
that need a same machine group. Given a set of orders, we 
want to  find a schedule that minimizes weighted production 
tardiness subject to constraints of (1) machine capacity and 
availability, 2) end product demand, and (3) precedence 

We first formulate the above scheduling problem as an 
integer programming problem in Section 11. In Section 111, 
we describe our solution algorithm which is developed based 
on a La rangian relaxation and network flow approach. 
Some prefiminary scheduling results of our algorithm are 
presented in Section IV. Its comparisons to the "Priority 
Factor" (PF) heuristic 31 are also given. Section V then 

relationship o ! manufacturing processes. 

briefly concludes our stu 1 y. 

II. PROBLEM FORMULATION 

To convey our main idea and simplify the discussion, 
we assume that all types of parts require the same sequence 
of processing by machine groups in the flow shop, i.e., the 
M machine groups and the associated buffers can be 
organized as a line of production shown in Figure 2.1. 
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Figure 2.1 
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Let us now define some notations for describing the 
above flow shop. 
Notations 
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:total number of part types; 
:part type index, i=l ,  e . . ,  I; 
:demand of type i parts; 
:due date of type i parts; 
:total number of machine groups; 
:machine group index, m = 1, - * ,  M; 
:capacity of machine group m; 
:processing time of unit type i part on machine 
group m; 

:time index; 
:buffer index, where b=m for the buffer before 
machine roup m, and b=M+1 for the stock 
of finishe! parts; 

:number of type i parts in buffer b at the 
beginning of time period t; 

:number of type i parts loaded onto machine 
group m for processing at the beginning of 
period t; 

:number of type i parts arriving at the stock 
at t ime  period t, where Zit = u ~ ~ ( ~ - ~ ~ ~ ) .  

Assume that it takes the same amount of processing 
time as long as the number of type i parts being processed 
is within the capacity of machine group m. Also assume 
that all the production demands IDi} are released at the 
beginning of scheduling. In such a shop, a batch of type i 
parts loaded onto machine (m-1) for processing at period 
t-Pi(m-l) go into buffer m after Pi(m-l) periods of 
processing at machine group (m-1). The stock buffer serves 
as a sink and accumulates finished parts. The flows of parts 
therefore must satisfy the following flow balance equations. 
Flow Balance Equations 

Xilo = Di; (2.1 .a) 
'il(t+l) 'ilt - 'ilt; (2.1. b) 

'im(t+l) = 'imt - 'imt + ui(m-1)(t-Pi(m-l))7 

'i(M+l)(t+l)' 'i(M+l)t -I- 'iM(t-PiM); 

Since a batch of uimt parts loaded onto machine group 
m needs Pim periods to complete the processing, the 

[E::\ V m#l, M+1; 

for i = 1, e . . ,  I. 

I t  
quantity C C uimr is the total number of parts 

i= l  r=t-P. +1 im 
which is being processed on machine m during time period 
t. This quantity must not exceed the processicg capacity of 
machine group m, i.e., 
Machine Capacity Constraints 

I t  
c c  Uimr 5 cm, V t ,  m. (2.2) 

i=l T=t-P. $1 

uimt and Xibt are nonnegative integers, 
V i, m, b, t. 

im 
Obviously, we should have the constraints that 

(2.3) 
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Our objective of production scheduling is to meet due 
dates if possible. A pendty cost is incurred by an overdue 
production, which increases with production tardiness. We 
then formulate the production scheduling problem as follows: 

structure of flow balance equations (2.1). The network, 
which is a graph consisting of nodes and arcs, is constructed 
as follows. Let a node nmt represent buffer m at time t ,  
m=l,  . . a ,  M, M+l and t= l , . . . ,  T. Since i t  takes Pim 
periods of processin time for a part to go from buffer m to 
buffer m+l ,  we form an arc (nmt,n(m+l)(t+p. )) to 

U i=l  t=l  im 
subject to constraints (2.1-3), represent a flow path between the two buffers. The 

remaining parts in buffer m after loading uimt for processing 
at t is carried by buffer m over to time period t+ l ,  i.e., 
they flow through arc (nmt,nm(t+l)). In addition, we let 
nodes S and T. be the source and sink nodes of the network 
respectively. The source node S is connected by an arc to 
node nll  with a constant flow equal to the demand Di. The 

The production scheduling problem (P) formulated terminal node T serves. as a sink of flows. The flow on arc 
above is an integer pro ramming problem of NP-hard (nmt,n(m+l)(t+pim)) 1s "imt 2nd Zit On arc ( n ( ~ + l ) t , T ) .  
computational complexity $61. Here, we develop for it a 
computationally feasible, near-optimal solution algorithm. It It can be easily checked out that the flow conservation at 
consists of four parts : each node represents one of the flow balance equations. We 
(1) the dual problem formulation and decomposition into can find the associated arc cost for arc 

production scheduling subproblems according to part (nmt,n(m+l)(t+Pim)) by aPDroPriatelY rearranging terms in 
types by applying Lagrangian relaxation to the machine 
capacity constraint; 

V t and m. The cost of (2) application of a minimum cost network flow algorithm subproblem (P-i) as 'mr' 

(3) application of a simple nondifferentiable optimization arc (n(M+1It,T) is '$'it. There is no cost for flows On arc 
scheme to the dual problem, and (nmt,nm(t+l)). From the above discussion, subproblem 

(4) development of a heuristic algorithm that finds a 
near-optimal, feasible solution based on the solution of (P-i) is now clearly formulated as a minimum cost linear 
the relaxed problem and the network structure. network flow (MCLNF) problem, which has an integer 

optimal solution. We adopt the RELAX code of Bertsekas 
and Tseng [I] to solve it. 

111.3 Solving the Dual Problem 

I T  
min  E $+,Zit (P)  

0, t 5 di, 

[ Ai(t-di), t > di, 
where Qit = 

and Ai is the overdue penalty cost coefficient. 

t +Pim-l 

to solve each production scheduling subproblem; r = t  

111.1 L w r n  

In problem (P), we observe that coupling among flows 
of different part types is through the machine capacity 
constraints. Applying Lagran e Relaxation to constraint 
(2.21, we form the Lagrangian function as 

* 
Let (ui} be the optimal solution to subproblems for 

the set of Lagrange multipliers Ak at kth iteration. Since c c * . z . + c  c 'imr-'m) @(A) is nondifferentiable with respect to A, we adopt a 
subgradient scheme of [2] to solve (D). The scheme is 

I T  M t  

T T M  I t  

i=l  t = l  it 1' t = l  mZlXmt(i21 r=t-p. $1 im 
(3.l.a) summarized as follows : 

The gradient of @(A)  with respect to Xmt is 
I t  'imr) * a  = c c (*itzit + c * 

'imr - 'm, 
i=l t=l  m21Xmtr=t-P. im +1 gmt(u ) -JJ-@(A) = E c 

i=l r=t-P. +I 
and the Lagrange multipliers are updated by 

Im T M  m t  
- 

where Xmt is the associated Lagrange multiplier. 

A (3.1.b) 
m = l  'TI' m 

Since the function above is additively separable in ui for a 

given set of Lagrange multipliers A, we define Xi;'= k T M t  if Xmt=O and gmt(u*)<O, 

i s  the step size at  the kth and the dual function 

@(A)s min Li(ui,A) - A C (3.3) iteration, 0 < y <: 2, and m(A ) is an estimate of the 

The iteration step terminates if cr is smaller than a 
threshold. Polyak proved that this method has a linear 

(D) y:t @(A), convergence rate [8]. 

111.4 Construction of a Good Feasible Schedule and the scheduling subproblem for type i parts is 

The schedule derived from the dual problem is (p-i) min [L.(u- A)s ($itZit+m~lXmt 
generally infeasible for the primal problem (P because (P) 

subject to (2.1) and (2.3) for type i only, which is not a convex programming problem [5] an the machine 
is independent of the scheduling for other types. capacity constraints (2.2) may not be satisfied after the 

relaxation. We develop a heuristic algorithm to adjust the 
1n.2 A Network Model schedule to a feasible one. We check capacity constraints in 

Each scheduling subproblem (P-i) can be formulated as an ascending sequence of indices m and t. For each violated 
a minimum cost network flow problem due to the network capacity constraint, we 

k r[W*)-r(A"l 
L.(u.,A)z c (9 z. + c Amt U. (3.2) 

It 1' m = l  7zt-p. +1 1 m ~ )  
where cr = im 1 1 t=l  

I T M  

t=l  m = l  optimal dual cost mt 
i i=l  U 

k subject to (2.1) and (2.3). 
The dual problem is then 

T M t  
Uimr)] 

d ', t= l  r=t-PimS1 'i 
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residual rocessin time 
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Case Optimal Cost Dual Cost Our Algorithm Heuristic 
LB = t o t a  requireP processfng time 1 

by using the CurrAnt schedje; the lower the P F  value, 
the higher the priority, and 
reroute excessive production flows starting from the 

. 
2 

(2) 

60000.0 59998.7 60000.0 60000.0 
160000.0 143026.0 160000.0 220000.0 

t pe of the largest priority. 3 200000.0 147205.0 240000.0 440000.0 

subnetwork and then reroute the flow by solving another 
MCLNF problem. 

IV. NUMERICAL RESULTS 

In this section, we present very preliminary testing 

, Case Our Algorithm Heuristic 
1 1.05 0.16 
2 1.29 0.19 
3 1.37 0.20 


