10—5

MARS -- MULTIPROCESSOR ARCHITECTURE RECONCILING SYMBOLIC
WITH NUMERICAL PROCESSING
A CPU ENSEMBLE WITH ZERO-DELAY BRANCH/JUMP

Gia-Shuh Jang, Feipei Lai, Hung-Chang Lee, Yeong-Chang Maa, Tai-Ming Parng, Jenn-Yuan Tsai

Department of Electrical Engineering
National Taiwan University
Taipel, Taiwan, RO.C.

Tel: (02)3635251, 3625252 Ext. 241

Abstract

The design of CPU chips (IFU, IPU and LPU) for the MARS project is
described in this paper. IFU is devised 1o interleave instruction fetch and
execution, and thus to achieve coordinated execution among datapath
chips. IPU is the main computing engine for integer operations and
operand address calculation. By using dual instruction buffers, a reserved
phase for Branch/Jump target fetch and instruction decode peeping, our
architecture can support almost-zero-delay branching and super-zero-delay
jump. LPU handles Lisp runtime environment, dynamic type checking
and fast list access. In this architecture, the critical path of complex
register file access and ALU ope1ation is distributed into LPU and IPU,
and the tracing of a list can be done fast by the non-delayed car or cdr
instructions.

L Introduction

MARS (Multiprocessor Architecture Reconciling Symbolic with
Numerical Processing) is a multiprocessing system. Each processor
board is linked together via an interconnection network (presently, a
single system bus). Inside each board, there are CPU chips, i.e., IFU,
(Instruction Fetch Unit) and IPU (Integer Processing Unit) as well as
special chips, FPU (Floating-point Processing Unit) and LPU (List
Processing Unit), dedicated for floating point and list operations,
Instruction Cache, Data Cache, Local Memory and separate Instruction,
and Address/Data buses.

IFU, which is built on a single chip, is the buffering, control
mechanism between the instruction cache and the datapath chips (IPU,
FPU, LPU). It is designed to interleave instruction fetch and execution,
and to achieve coordinated execution among IPU, FPU, and LPU. The
block diagram is given in Figure 1, in which there are a remote PC
(Program Counter) chain, a displacement adder, a return address stack
(RAS) to store PC for call/return instruction pair and dual instruction
buffers for holding sequential and branch instruction streams.

IPU retains the integer datapath and some control parts of a common
RISC CPU 1-3, performing integer arithmetic, shift, logical operations,
and address calculation for data operands of all datapath chips. The
functional block is displayed in Figure 2, where we can see a flat 32-word
register file, a 2-level internal forwarding latch, and a shifter.

FPU conforms to IEEE Standard 754 16. It has separate, pipelined
Add/Sub and Mul/Div units to provide spatial and temporal parallelisms,
a 32-word 64-bit register file, a hardwired control unit, direct support for
hardware format conversion and a synchronous interface protocol to couple
tightly with other chips.

LPU provides hardware primitives for list processing, such as car, cdr,
cons, rplaca (replacea), rplacd (replaced). It is featured with a big windowed
register file to expedite procedure call, a tag manipulation datapath, and a
control register for shallow binding.

CCMMU (Cache Controller and Memory Management Unit) is
responsible for the operation of local data cache on each processor board,

365

address translation, and data coherency protocol among processors. Local
data cache will be as large as 128 KB and data will be heuristically
prefetched in the face of pointer or list. Coherence protocol will be similar
to that of the Dragon Project 4.

IL_Why Separate IFU and IPU?2

At first, we intended to adopt CPU architecture like MIPS-X which
incorporates a 2 KB on-chip instruction cache 5, but owing to the unique
configuration inside our processor board, an on-chip instruction cache
inside CPU will not provide any speed advantage when CPU, FPU, and
LPU all wait for instructions coming from the instruction cache and then
decode their own instructions. Therefore, we decide to separate the
instruction cache from the CPU, and build IFU to accommodate the
remote PC unit and the necessary logic for buffering and control of
instruction access. This decision did cause some problems, thereby
influenced our designs for instruction set and microarchitecture, but it
provided us valuable experiences to deal with such an arrangement and the
result can still meet our initial requirement.

LLMi i
Instruction Set

The instruction set (see Figure 3) for IFU and IPU follows that of a
typical 801/MIPS-style RISC processor with some minor changes fitting
for our own scheme to achieve fast and simple instruction decode 1.3. By
careful encoding, the burden of instruction decoding is well distributed
into the datapath chips. There are 4 categories of IFU/IPU instructions,
i.e., Compute, Load/Store, Branch/Jump, and Miscellaneous (see Figure
3). They are carefully designed with a view to exploring the controllabil-
ity and observability of the hardware and thus can be used as a good target
for an optimizing compiler. There are no variable-length instructions to
prevent instruction addresses from crossing the page boundaries. All
Compute operations are register-oriented, that is, only Load/Store
instructions are allowed to access the memory. The most attractive merit
of our architecture is the minimization of delay slots for Branch/Jump
Instructions. We will give a detailed description of these instructions in
the following sections.

The instruction set of LPU is carefully designed to speed up the
execution of Lisp programs. There are 4 principal types of instructions,
List primitives, Stack operation, Data/tag transfer, and Special.
Hardware-implemented list primitives are car, cdr, cons, rplaca and rplacd.
The stack operation includes push and pop, which are mainly used for
binding/unbinding special variables and saving/restoring of frame
windows. The content of stack pointer register can be read or written by
rd_sp or wr_sp instructions. The data transfer instructions include: load,
mov, load f, store_f (the latter two generate address for FPU) and f_to_ .
The tag value of a register can be loaded with the immediate tag value
packed in instruction or moved from another register. There are some

special instructions of LPU which could be executed only in kernel mode.
The rd_Ipsw and wr_Ipsw instructions transfer data between registers and
LPU processing status word which contains current window pointer, saved
window number and some system status. The Ipu_wake and Ipu_sleep
instructions control LPU to be active or not. When LPU is inactive, the
MARS system is acting as a general purpose computer without hardware
support for Lisp.

Pigeline Sct { Data Fl

‘We choose an unbalanced pipeline scheme (see Figure 4) to eliminate
redundant bubbles occurred during pipeline execution. The IFU pipeline
has 2 stages, PD/IAC (Partial Decode/Instruction Address Calculation),
and ICA (Instruction Cache Access). IAC and ICA overlap temporally
with the first 2 or 3 stages of the datapath pipelines. On the other hand,
the IPU pipeline consists of S stages, IF (Instruction Fetch), ID/RF
(Instruction Decode/Register Fetch), ALU (ALU operation), MA
(Memory Access), and WB (register Write Back), but in fact, there are at
most 4 instructions (see Figure 5) to be executed in the IPU pipeline.

Due to the high instruction bandwidth provided by the IFU, the whole
system uses only one phase to latch the prefetched sequential instruction,
leaving a bubble of one phase in the IF pipeline stage. This bubble is
used to fetch the target instruction for all branch and jump instructions.
Accompanied by a fine tuned microarchitecture, this pipeline scheme does
achieve a zero-delay fast compare-and-branch.

We allocate one cycle for memory access, which will be tight for
normal cache memory systems. To loosen the timing constraints, a
late-miss signal® used to check whether the memory access is successful
is verified at the beginning of the next cycle. If it is activated, the whole
system will be stalled and then be forced to reexecute the second phase of
the memory access cycle until the correct data is fetched.

Owing 1o a simple instruction set and a sy ic 32-word file,
the ID/RF stage needs one phase only. Although the ALU stage occupies
2 phases, yet it is well designed 15 to get the correct results settled almost
within one phase. The additional phase will serve as the reserved time
slot for memory access if a slow memory system is of interest.

A double internal forwarding mechanism is implemented in hardware. It
reduces delay slots of Load instruction from 2 to 1, and makes the
pipeline free of interlocks caused by data dependency.

The pipestages of the LPU is given in Figure 6, which is somewhat
different from Figure 4. First, ID is no more overlapped with register
fetch. Second, instead of taking an ALU operation in the IPU, LPU
performs tag comparison and overlaps it with memory access. Despite
these different operations, the two pipeline stages get synchronous at the
memory access stage.

Most Lisp programs execution spend most of the time doing list access.
List structure is usually constructed with two parts, header of list (car)
and tail of list (cdr). And each of the two parts contains a tag field to
identify the data type and a data field to tell what the data is or where it
is. When a car or cdr instruction issues, tag field check and data field
access carry out simultaneously. By the delayed RF mechanism of LPU,
registers can be fetched with shortcut and incur no internal interlock to the
ensuing instruction. We call this Non-delayed list access, whose
details are illustrated in Figure 7.

Special Desien I for_IPU

The general form of microarchitecture is a direct consequence of the
chosen instruction set and pipeline scheme. Like other MIPS-like CPUs,
the IPU microarchitecture (see Figure 2) bears all the advantages resulting
from a simple instruction set, a flat register file, and a streamlined system
design.

A flat 32-word, 32-bit register file provides a large storage template for
the optimizing compiler to allocate global variables, frequently used
temporary variables, and passed parameters. By dint of graph coloring
algorithm 17.18 and a rich register file, the optimizing compiler can
decrease the variable swapping overhead caused by procedure calls. A Byte
Inserter/Extractor is included to support manipulation of characters and
strings. Finally, we determined to implement a simple shifter that

366

supports 1 to 3-bit logical left shift and 1-bit logical and arithmetic right
shift. The small shift amount is chosen to partially support the address
calculations of array and struct data types.

Mic hi for_IFU

As shown in Figure 1, the IFU is featured with its dual instruction
buffers, the partial decode unit, the return address stack (RAS), the
displacement adder, and the remote PC chain.

The dual (sequential and branch target) instruction buffers will have 8
entries each, with a 2-word wide bus directly from the instruction cache.
Originally, the instruction buffer was designed as an instruction queue
with a single inlet and outlet, but after considering the need of instant
access of branch target from cache to the instruction registers of datapath
chips, we decide to use parallel load scheme instead of single inlet plus a
delicate control logic for initial filling/bypassing of buffers. The outlet is
controlled by a counter/multiplexer to sequentially enable the normal
outgoing instruction to the pads. Jump instructions, on the other hand,
are intercepted within the IFU and will not be released to the datapath
chips.

The partial decode unit first distinguishes control transfer instructions
from other types of instructions and then extracts some field (target field
for Jump instructions, e.g., jumpa, jumpb, cal_jmp, and offset field for
Branch instructions) within the instruction to decouple the instruction
execution of IFU from all other datapath chips and thus get more
parallelism. The return address stack (RAS) contains the return address
(NEXTPC) for procedure call instruction pair cal_jmp and ret_jmp. It is
planned to have at least 16 entries to satisfy deep procedure calls of Lisp
and to reduce overflow. Overflow/Underflow conditions are resolved
through load_ras and store_ras instructions.

The PC chain is a chain of shift registers holding all the PCs currently
in the pipeline. It also includes an incrementer for the most 30 significant
bits of current PC to access the next instruction block. The displacement
adder generate address for Branch/Jump instructions, either an offset is
added to current PC or a 25 bit target field is concatenated with the most 7
significant bits of the current PC. Meanwhile there is a base register to
facilitate register indirect mode Jump, the jumpb instruction.

Registers Structure for LPU

The register structure in LPU plays the role as a runtime environment
administrator. In Lisp, arguments, local variables and special variables are
accessed with high frequency. These variables are allocated in register file
and maintained in a fast scheme described later. There are two kinds of
register file in LPU, one is the control register file and the other is the
binding register file. The control register file organized as an 8-frame,
136-word overlapping frame window is used to keep the activation
records of callers and callees. The 32-word register file of IPU and LPU is
mapped to one of the frame window, so users can view the control register
as a 32-word register frame window whose data may be integers (in IPU),
floating-point numbers (in FPU), or pointers (in LPU). The binding
register file is used to keep the binding value of special variables. We use
shallow binding scheme to bind and restore the special variables.

In the MARS system, only LPU has frame-window register structure
and there are merely 32 registers in IPU and FPU. The correspondence
between LPU control registers and IPU/FPU register file is obtained by a
switched partition mapping mechanism. Fig. 8 also shows the mapping
of IPU/FPU's 32-word register into LPU's frame window. The A group
registers (RO - R7) and C group registers (R16 - R23) of IPU/FPU are
always mapped into the global frame and local frame of LPU's current
frame window. In contrast, the B group registers (R8 - R15) and D group
registers (R24 - R31) of IPU/FPU are mapped into the input frame and
output frame or vice versa according to the current window number of
LPU being even or odd.

Besides the above mapping scheme to reduce the overhead of saving and
restoring IPU/FPU register data, we save the register file data into LPU's
current frame window during the execution of an IPU instruction. LPU
monitors all the instructions executed by IPU. When IPU executes an
operation and writes the result back to the register file, it also puts this

result on the data bus at the memory cycle. Meantime, LPU receives the
data and writes them back into the corresponding registers. With this
mechanism, we do not need to save any IPU registers data into LPU when
executing a function call, but only have to restore the necessary IPU
register data from LPU which would be used before the execution of the
next function call or before the end of current function when the called
function returns.

By using above mechanisms, the register data of IPU could be kept in
LPU's control register file with little overhead when executing function
call or return. The muitiple, overlapping frame window structure of
control register file in LPU updates runtime environment very fast.
Because LPU does not execute ALU operations, it can spend more time
accessing the complex register file. On the other hand, the IPU, which
must spend time executing ALU operations, has a simple 32-word register
file and can access the registers faster.

The 32-word binding register file, which has no counterparts in
IPU/FPU, is used to store special variables in Lisp. Each special variable
corresponds to one register allocated at loading time. We use shallow
binding scheme to handle the binding registers. When a special variable is
bound to a new value, the old value in the corresponding register has to be
pushed into the binding stack, but when this special variable is unbound,
the old value is popped from the binding stack and restored to the
corresponding register. An example of binding and unbinding of special
variables is shown in Fig. 9. The binding registers can only be used by
LPU's instructions. If they are needed to execute IPU or LPU instructions,
they should be moved to the global frame registers. By using the binding
registers, we can speed up the access of special variables.

LV. Control Transfer and Exception Handling
Control Transfer

Branches have a considerable effect on the performance of our deeply-
pipelined architecture because they interrupt the flow of the pipeline. After
studying various branching schemes of pipelined processors 6-8,12, we
decided to combine dual instruction fetch paths with fast/delayed/squash-
able compare-and-branch to obtain an almost-zero-delay branch. By
employing dual instruction buffers in IFU and dual instruction registers in
each datapath chip along with a reserved phase within the IF stage, both
the sequential and branch target instructions are ready for selection by the
branch result at the end of the IF stage. If the compare is a fast compare
(fch), i.e., test if one operand is equal to, less than or greater than zero, or
test if two operands are equal or unequal, we can resolve the compare at
the early start of the ALU stage of the current instruction, that is, settle
the branch before the end of the IF stage of next instruction. Therefore, we
can obtain a zero-delay branch.

However, in some cases, the compares are not to be or can not be
converted to be fast, thus a full compare must be addressed by delayed
or squashable compare-and-branch (dch and scb). A delayed
compare-and-branch is used when there are available surely-executed
instructions to fill the delay slot, whereas a squashable one is used when
only probably-executed instructions coming from the beginning of the
branch target are available. If the branch is not taken as expected, the
instruction filled in the delay slot will be squashed (i.e., turned into nop).
Statistics have shown that, through compiler techniques, about 80% of
branches can be changed into fast compare 2.9. Accordingly, we belicve
fecb will enjoy the lion share of Branch instructions.

Since Jump instructions only involve target address calculation within
IFU and need no data operation of the datapath chips, they are intercepted
by the IFU and will not be released to the datapath. With dual partial
decode masks, the partial decode unit of IFU can peep out the existence of
an ensuing Jump instruction, calculating the address, and accessing the
instruction cache ahead of time, so IFU can send out the jump target in
the original instruction slot for Jump. From the viewpoints of datapath
chips, the IFU absorbs the Jump instruction and directly issues the target
instruction. We would like to call it a super-zero-delay Jump because
the delay is de facto minus one.

367

Exception Handling

Exception is another source of pipeline breakage, which needs very
careful treatment to reduce its harm to performance. Though there have
been many schemes proposed to implement precise exception (interrupt)
9-11, the hardware complexity and the precision of exception recovery
still pose to be a dilemma. We often have to trade off one for the other. In
our system, we determine to favor the former, that is, to reduce the
hardware complexity reasonably to quicken our cycle time and hence
increase our performance. Once an exception happens, either in IFU or
any of the datapath chips, the exception-stuck chip will serve as a
floating master, sending encoded exception condition to the IFU, and
notifying all other chips to purge all the instructions not yet finished in
their pipelines. The IFU also takes this information to decide the starting
address of the exception handling routine. Worthy of note, the mechanism
for pipeline purging can be shared with that of branch delay (instruction)
squashing, thus getting a uniform design for hardware.

Y. Status and Performance Expectation

Up to now, with the help of the GDT M language, intraboard functional
simulation has been finished and logic-level simulations for the chips are
under way. Performance evaluations by means of queueing models and
instruction-level trace-driven simulation for a uniprocessor, system bus,
and overall system are also being undertaken.

Five benchmarks - 20 queen, ackermann(3,8), shell sort, and Hanoi
tower (n = 18 and n = 24) - have been executed on SPARC, mips R2000
and our MARS instruction-level simulator. The results are shown in
table 1. Column 1 gives the results for MARS, excluding the effects of
cache miss, while column 2, 3, 4, 5 give those for SPARC, mips
R2000, SPARC (optimized) and mips R2000 (optimized). Column 6
through 9 give the ratios of execution time for SPARC and R2000 to that
of our system. From these data, we can see that MARS executes C about
3.24 times as fast as SPARC (with optimization) and about 1.66 times as
fast as mips R2000 (with optimization).

According to Katevenis' thesis 2, branch/jump occupies at least 30%
of the dynamically executed instructions which often incur 1 to 2 nops
or delay slots to be filled. Our pipeline arrangement can drastically
reduce slots due to control transfer by fcb (compared with mips R2000
13,14 when there is no program rewriting, the figures are 1/6 for
non-numeric and 3/8 for numeric programs, respectively); leaving the
compiler more chances to fill the delayed load slots, thus accomplishing
our goal of single-cycle instruction execution. According to the above
estimation, our architectural performance gain over mips R2000 will be
12%. In addition, our clock rate is 5O ns, which is 7/6 faster than that of
R2000. Thus MARS should outperform R2000 by about 30%, which is
quite close to our preliminary results (if the effect of cache miss or other
kinds of overhead is taken into account).

Three Gabriel benchmarks - a set of programs which test the speed of
various aspects of Lisp systems- have been carried out to evaluate the
power of MARS against other architectures, shown in table 2. The first
column shows the results for MARS, excluding the consideration of
cache misses. Column 2, 3, 4, and 5 give the results for three other
architectures: the results for VAX-11/780 are from Gabriel's book 19,
SPUR's results are from Patterson's paper 20, MIPS-X's results are from
Pater's paper 21, with and without optimization. MARS executes Lisp
programs about 27.8 times as fast as the VAX-11/780, almost 4.1 times
as fast as SPUR, and about 2.3 times as fast as MIPS-X. However, the
performance advantage varies significantly among all these benchmarks.

MARS Lisp performance edge over MIPS-X may be attributed to its
direct hardware support for tag handling, type checking on lists, binding
registers and uses frame windows to reduce the cost of register saving and
restoring. The frame windows do not really pay off for the Gabriel
benchmarks and their average effect is neutral. This is because these
benchmarks use only a few arguments and local variables, and have a
very deep call-depth.

Y1 Conclusion

A design for CPU (IFU, IPU and LPU) chips of our MARS system is
proposed in this paper. By separating the IFU from the datapaths and our
deliberate pipeline arrangement, we can not only get coordinated
executions among IPU, FPU, and LPU but also drastically reduce slots
due to control transfer; leaving the compiler more chances to fill the
delayed load slots, thus accomplishing our goal of single-cycle instruction
execution. What is more exciting, we can absorb the jump instructions
within the IFU and directly issue the target to datapath chips to achieve
what we call the super-zero-delay jump. Preliminary performance
evaluations have shown that our MARS achieves a remarkable edge over
SPARC and mips R2000. Also, with deliberate register structure for
environment updating and variable binding, direct hardware support for list
primitives, distributing register fetch critical path to LPU and other chips
and non-delayed car and cdr instructions, our system will outperform
VAX, SPUR and MIPS-X on Lisp execution to a remarkable degree.

VII. Acknowledgements

The MARS project is partly supported by the National Science Council
under contract NSC78-0404-E002-45. We would like to thank Jiun-Lu
Lee for his programming effort on our instruction-level simulator, and
Jiun-Loong Tsai of ERSO, ITRI for his help on running benchmarks on
mips R2000.

References

1. G. Radin, "The 801 Minicomputer," Proc. SIGARCH/

SIGPLAN Symposium on Architectural Support for Programming

Languages and Operating Systems, ACM, Palo Alto, Mar. 1982, pp.

39-47.

2. M. Katevenis, "Reduced Instruction Set Computer Architectures for

VLSL," Ph.D. thesis, Computer Science Division(EECS) UCB/CSD,

University of California, Berkeley, Oct. 1983.

3. S. Przybylski et al "Organization and VLSI Implementation of

MIPS," Journal of VLSI and Computer Systems, Vol. 1, No. 2, Dec.

1984, pp. 170-208.

4.). Archibald and J.-L. Baer, "Cache Coherence Protocol: Evaluation

Using a Multiprocessor Simulation Model,” ACM Trans. Computer

Systems, Vol. 4, No. 4, Nov. 1986, pp. 273-298.

5. M. Horowitz et al "MIPS-X: A 20-MIPS Peak, 32-bit,

Microprocessor with On-Chip Cache,” IEEE Journal of Solid-State

Circuits, Vol. SC-22, No. 5, Oct. 1987, pp. 790-799.

6. S. McFarling and J. Hennessy, "Reducing the Cost of Branches,"

Proc. 13th Symposium on Computer Architecture, Jun. 1986, pp.

396-403.

7. J.E. Smith, "A Study of Branch Prediction Strategies,” Proc. 8th

Symposium on Computer Architecture, May 1981, pp.
135-148.

8. J. K. F. Lee and A. J. Smith, "Branch Prediction Strategies and

Branch Target Buffer Design,” Computer, Jan. 1984, pp. 6-22.

9. P.Chow and M. Horowitz, "Architectural Tradeoffs in the Design of

MIPS-X," Proc. 13th Symposium on Computer Architecture, Jun. 1986,

pp. 300-308.

10. J. E. Smith and A. R. Pleszkun, "Implementation of Precise

Interrupts in Pipelined Processors," Proc. 12th Symposium on Computer

Architecture, Jun. 1985, pp. 36-44.

11. J. Hennessy et al, "Hardware/Software Tradeoffs for Increased

Performance,” Proc. SIGARCHISIGPLAN Symposium on Architectural

Support for Programming Languages and Operating Systems, ACM,

Palo Alto, Mar. 1982, pp. 2-11.

12. D.J. Lilja, "Reduced the Branch Penalty in Pipelined Processors,"

Computer, Jul. 1988, pp. 47-55.

13. J. Moussouris et al, "A CMOS RISC Processor with Integrated

System Functions," The Proceedings of COMPCON Spring 86, IEEE,

Mar. 4-6, 1986, pp. 126-137.

14. Craig Hansen et al, "A RISC Microprocessor with Integral MMU and
Cache Interface,” Proc. ICCD, IEEE, Oct. 6-9, 1986.

15. Tackdon Han, David A. Carlson, "Fast Area Efficient Adder," Proc.
8th Symposium on Computer Arithmetic, May 1987.

16. IEEE Computer Society Microprocessor Standards Committee Task
P754, "A Proposed Standard for Binary Floating Point Arithmetic, draft
10.0,” Jan. 1983.

17. G. J. Chatin et al. "Register Allocation via Coloring,” Proc.
SIGPLAN Symposium on Compiler Construction, Jun. 1982,

18. F. Chow and John Hennessy, "Register Allocation by Priority-Based
Coloring,” Proc. SIGPLAN Symposium on Compiler Construction,
Jun. 1984.

19. Richard P. Gabriel, "Performance and Evaluation of Lisp System,”
Reading, MIT Press, Cambridge, Mass., 1985,

20. Dave Patterson, "A Progress Report on SPUR,” ACM
Computer Architecture News, Feb. 1987, pp. 15-21.

21. Peter Steenkiste, and John Hennessy, "Lisp on a Reduced Instruction
Set p Ch ization and Optimization,” Computer, June
1988, pp. 34-45.
tarqe} | next | targe}
T 1
= -
L. L
s s e
1% ControE
('— i | fe—s] T TR
Partial ;-u-u Mask [11
fe] 18 -
rehn
Sequential Branch =
Instruction Target Returnd
Buffer Instruction | |add;
butfer Stack
(RAS)
Disp.
b o]
64 64
DEMUX MUX
[, Instruction [/s
/ . 29
* Fetch Unit

Figure 1. The IFU Block Diagram

int. +Bus m
l, 5 1",,,,,I u‘ I_V —
Tk
I migun
ol o R el s I
¥\
LI BT

368

Figure 2. The IPU block diagram

instruction Operands Action Note Delay :
T F__lome ALU
GOMPUTE S IE MA WB
add Rd,Re1,52 Rd <- Rel +82 Integer Addition R PD/
addy fd,Rs1,82 Rd <- Rel + 52 Unsigned (nteger Addition 1AC | C A
sub RY,Rs1,52 Rd < Rt -8§2 Integer Subtraction SoriaT Decoda T =T
subu RaAs1 S2 Rd < Ref .82 Unaigned Integer Subtractio PD artial Decode in the -
g nelgned Integor Sublaction JAG |Instruction Address Calculation in the IFU
and Ra,Rst.S2 Rd < Rel a2 82 Logical AND Iézlé 1 structi%n IC‘acr{a l}pces's Iinhtl?e lf-'LJ”:U
o Ro.AR1.S2 Rd< Rst || 82 equential Instruction fetch trom
g < Fetll Logleal OR - BTF | Branch Target instruction fetch from IFU
xor Rd,Re1 52 Ad < Rs? xor §2 Logical Exclusive OR %lz): Lr(]strluctztion E 1Dl_?cm:ha
egister etc
s Rd,Ast, 52 Rd < Rs1 << 52<01:00> Shift Lett Logical ALU | ALU operation
srl Rd,Rs1,82 Rd < Rel >> $2<00> Shitt Right Logical MA 1 Memory Access
e WB | register Write Back
sre Rd,Re1,52 Rd <- R8st >> 52<00> Shift Right Arithmatic - - -
extract RG,Rs1,imm RA<A1:08> < 0 Byte Extraction Flgure 4. The IFU/IPU plpehne
Rd<07:00> < byte imm<01:00> of Rs1
insert Rd,Rs1,As2 Imm Rd<others> <- Rd<others> Byte Insertion ¢1 j ‘ ‘ ‘ \ ‘ \ ‘ \ ‘ L L__‘ L l
byte Imm<01:00> of Rd < Rs1<07:00>
mult Rs1,52 LO <- bk <31:00> of Intiger Multiplication 92 _J—_[__[__I__J___ﬂ_f__[_\—l
Re1 * §2
M < bt B322> o o oA
div Re1,52 LO <- Rs1 div S2 Intiger Division 1Ag -
M. Ret mod 52 F BTFoR] AU N
; 3
BRANCH / JUMP DYA | MA]
tcb cond,Rs1,52,offset ¥ (Rsl cond §2) Fast ComparesBranch with yos
then PC = PG + offset 2610 Golay siot POl IGAY
dod cond,Rs1,S2,0ftset ¥ (Re1 cond §2) Dolayod ComparesBranch with yes AC A
then PC = PC + offset one delay siot 3 ;:Inm ALU
scb cond,Rs1,52,0ffset ® (Rs1 cond 52) Squashable Compare&Branch i~ ;
then PC = PC + oftset DYA/
o Squash the next
instruction in the H
delay slot PO/ ;
jumpb base PC = base register . 1AC ‘C‘l\\ ¢
inFU Jump register indirect ot ‘N-U
jumpa targot PC = target 1)
{ whthin & segment) Jump absolute OYA | MA lwal
! - 1
cal_jmp target ras{++t0p] = PC + 1 Push next PC 10 ras POl Yica l
PC « target then Jump to target el U
ret_imp PC = rasftop—} Pop top of ras to PC - SIF BTFOR] ALU
MISCELLANEOUS ova | ma |wel
Pu_to_itu Ra.Ast IFU R <-IPU Ret IFU specia regster read e) Parlial Decode n e IFU____
. IFU special register wrlte yos IAC Instruction Address Calculation in the IFU
u_to_ipu Re.Ast IFURd <- IPU Rat Iglé i slrucn?,nlclacre Access in the IFPFU
equential Instruction fetcl m
load_ras adar ras{++bottom] = M{addr] Load ras upon stack underflow yos BTF Braqnch Target instruction fetch from 1FU
store_ras agdr Madd] = rasibotiom—] Store ras upon stack overow yos 5:“ E:'?;fgg"&ggwde
syscall ras{++1op] = PC +1 System Call Trap operation
P:roxe]onmn :umm DVA Data Virtual Address calculation by ALU
modify STATUS register MA Memory Access
wB ragister Write Back
e restore STATUS register Retum from
PC = rasitop-} . Exception Figure 5. Instructions executed in the IFU/IPU pipeline
mthi Al Rd <- HI Move contents
of special register
Hl 10 Rd 02 ‘ !
Ad < Move contents
mtte Rd «lo of special register
LO t0 Ad
JLILT LI LTI L
Instruction Operands c‘;‘:“ Action Note Delay ¢
LOAD " H
load [— R < M(Rs1+52)803] Load from data cache into Rd yes |SF »BTF[o 1 A owl FO (wB]
. MA
test_and_set Rd,Rs1,52 Ts RY < M{RS1+52)803] Test_and_set operation yos
M {(R81+52)803] <00> <- 1 . -
load_cs Rd,As1,S2 any Rd <- external cache defined Load cache status into Rd yos IS‘F EBTFl D l D : FF OWI FD iwB l
by (Rs1 + 52) §
MA
STORE
store Rs2,Rs1,Imm w Rs2 > M{(Rs}+imm) 8'03] Store trom Rs2 Into data cache [SIF :BTFI D I D RF ow] FD iWB |
store_cs Rs2,Rs1,imm any Rs2 -> extemal cache state Store from Rs2 into data cache
defined by { Rs1 + imm) cache status register MA
to_tpu RARE10 NA Ra2_dats -» fpu Rd <63.32> Send data from IPU to FPU yos -
trom_tpu Rd,Rs1,0 NA Rd <- FPU Rs1<63.32> Send data from FPU to IPU yos SIF | Seque'l Instruction Fetch ISIF iBTF| ID | FD: AF [« v
BTF | Branch Target Fetch - ~ p——
ID | instruction Decode st
RD Register Dacode _
Figure 3. Instruction Set for IFU and IPU FF | Register Fetch
CWVP | Tag Compare
MA | Memory Access
WB | Register Write Back

369

Figure 6. LPU pipeline stages

v LTI
P LT

ey | cdr [i0] RF ma

[we

1atch data &
Internal forwarding

PU | car [ID]

—

@LPu | car [ID] RF L MA

[we]

Latch

data &

LPU Icmp,brl ID |

cm

Internal forwarding

Any [Delay | |

Any| F []

Figure 7. Examples of non-delay load

IPU/FPU LPU
A RO -R7 GLOBAL
B R8-Ri5 WO.IN w7.0UT
[+ R16-R23 [WO.LOCAL
D R24-R31 fwo.out WLIN
C Ri6-R23 W1.LOCAL
B PRe-R15 W2IN W1.0UT
C Ri6-R23 Iw2.LOCAL
D R24-R31 wzout W3IN
C Ri6-R23 W3,LOCAL
B R8-R15 Wa.IN W3.0UT
C R16-R23 4L OCAL
D R24-R31 Wa.0UT WS.IN
C Ri6-R23 W5.LOCAL|
B R8-R15 Ws.IN W5.0UT
C R16-R23 we.LoCAL
D R24-R31 We.ouT WZIN
C R16-R23 wr.LocALl

of control regl

Figure 8. Fram

file and

‘mapping of corresponding register groups in IPU/FPU

(let ((x 3)
)

@m
(foox y z))

Before let binding & after {foo x y z)

x

Binding Register
x.data
y .gdat

2.datg.

SN

po

binding x,y,z
103,57 restoring x, y and 2
After let binding:
Binding_Rogister _ Momory _
x 3 .
Y 5
z 7
x.data
S —{ zdala
Figure 9. Binding and Unbinding of Special Variables
Time in seconds Ratios
MARS SPARC R2000 SPARC@ R20000 SPARC/ R2000/ SPARCG/ R20008/
MARS MARS MARS MARS
queen 13.7 709 49.26 49.42 228l 5.18 3.60 3.61 166
acker 1.36 21.19 342 1620 242 15.58 251 1191 178
shell .0076 005 002 002 001 644 2.58 258 129
H18 01835 075 035 032 033 4.09 191 174 180
H24 11.7 4898 2201 21.62 21.16 4.19 1.88 1.85 181
Mean 6.17 242 324 168
‘Table 1. 4 time in ds for five C b
Note: 1. @ means execution with optimization.
2. Mean is the geometric mean.
Time in millisconds Ratios
MARS VAX SPUR MIPSX MIPSX0 VAX/ SPUR/ MIPS-X/ MIPS-X6/
MARS MARS MARS MARS
tak 37 80 120 72 72 24 32 19 19
stak 70. 7100 1060 602 502 101.4 151 86 84
takl 325 5270 825 482 448 168 25 15 14
div-iter 55 3800 — 307 157 69.1 - 56 29
divrev 340 3750 2910 284 196 11.0 86 08 06
dertv 110 8580 990 604 381 780 9.0 5.5 35
Geometric
mean 354 62 29 22
Table 2. Execution times in milli; for the

Note: MIPS-X@ mean that Lisp programs executie with optimization.

370

