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Abstract- An autonomous mobile robot navigation sSystem
based on stereovision perception is developed. The
surroundings are recognized by construeting local 3D maps
from binocular images. Minimizing the artificial potential
energy of the mobile robot on a local 3D map plans a relay
position and an approaching path. A self-learning controller
using adaptive fuzzy systems is designed to manipulate the
dynamic behavior of the mobile robot in tracking a planned
path. Using Lagrange formalism, a mathematical model
describing the autonomous mobile robot is derived for
simulation study. Simulation and experimental results are
presented.

Index terms- mobile robot, autonomous navigation,
stereovision, adaptive fuzzy control

1. INTRODUCTION

A mobile robot with abilitics of environmental
exploration and self-learning control can navigate itself
autonomously in a dynamical environment. To obtain
information about the surroundings for navigation, vision,
radar and sonar systems are most frequently adopted as
sensors. Stereovision, which functions like human visual
perception, can provide not only object detection and
recognition but also three-dimensional spatial information
of the surroundings. This makes it one of the most potential
sensing systems for autonomous mobile robot navigation.
Stereovision relies upon a mechanism of stereovision
matching 1o obtain the 3D information. Practically, the
information in the intensity value of a single pixel on an
image is usually ambiguous for the matching. Therefore, the
area-based matching instead of the point-based matching is
usually implemented [1], [2], [3}. The matching may
transform a pair of stereo images into a disparity map, and
finally a 3D map if the focal and baseline lengths are known.
For autonomous navigation, an automatic procedure of path
planning should be implemented to plan a desired path on
the 3D map so that the mobile robot can navigate itself to a
destination. Path planning reference to a global 3D map is
generally more correct than that using local 3D maps. But, to
construct a global 3D map by stereovision needs integrating
multiple local 3D maps. This will certainly result in time
delay. For quick response of the mobile robot navigation to
changes in the environment, our approach is to produce a
local 3D map from each stereo image pair. Then, on each
local 3D map., a relay position and an approaching path are
planned. Tc compensate lacking of a global map,
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appropriate motion strategies are designed to direct the
robot’s visual search.

Successful applications of path planning using the
artificial potential field were reported in [4], [5], and [6]. In
this paper, the collision-free space on each local 3D map is
divided into a collection of cells. Then an artificial potential
field is built on these cells. The artificial potential field is the
sum of an attractive and a repulsive potential field [7].
Minimizing the artificial potential energy can find a relay
position and an approaching path on the local 3D map. Since
exploration of an approaching path is restricted in the
collision-free cells. Collision avoidance is automatically
obtained.

Driving a mobile robot to track a planned path requires
steering and dynamic control. However, the mobile robot is
a nonholonomic dynamic system with intrinsic non-linearity,
un-modeled disturbance and unstructured un-modeled
dynamics [8]. This makes the control design a challenge. We
equip the mobile robot with a self-learning controller whose
parameters are tuned automatically through a learning
algorithm instead of specified by the designer. The
seif-learning controlier is composed of two adaptive fuzzy
systems to handle the linear and angular velocity control,
respectively. A learning mechanism enables  the
self-learning controller to extract navigating knowledge
from experienced data.

I1. KINEMATICS, DYNAMICS AND SELF-LEARNING
CONTROL OF AN AUTONOMOUS MOBILE ROBOT

Fig. I shows a picture of the Autonomous Mobile Robot
(AMR) developed in this work.




Fig. 2 presents a schematic top view and Fig. 3 illustrates its
main compenents.

Fig. 2 Schematic top view of the experimental AMR.

Rebay Dsired Contiol
posiios Fosiios Vokeges
— —_— —_

Wohick

t
e

[ | Dl

Fig. 3 A block diagram of the AMR.
The system hardware is mainly composed of a motorized
vehicle, a stereovision system, a control computer, and
batteries. The vehicle has four wheels with two free-to-rotate
front wheels and two independent driving rear wheels. Each
rear wheel couples with an optical encoder to measure the
speed and posture of the AMR. The control computer
handles the procedures of stereovision, path planning, and
motion control. The sterecvision system is a binocular
design with two USB CCD cameras as sensors.

A. Kinemarics and Dynamics of the AMR

The AMR is known as a nonholonomic dynamic system
with intrinsic non-linearity, un-modeled disturbance and
unstructured  un-modeled  dynamics (8],  Autonomous
navigation of such a system needs integrated steering and
dynamic control. Literature [9], [10], [1] has shown the
dynamics of a nonholonomic system with nr-dimension

generalized coordinates q € K™ subject to m constraints
can generally be described as
M(Q)ij + C(q:d)q + Fd) + G(@) +1, =B(@T+ AT (@ (1)
and constrained by
Al@)qg=0 (2)
where M(q)e R™ is a symmetric, positive definite inertia
matrix, C(gq,@)€ R™" is the centripetal and Coriolis
F(ge ®™
G(q)e ®™ is the gravitational vector, T, € K" denotes
the bounded unknown disturbance including unstructured,
un-modeled dynamics, B(q)e R™ represents the input

matrix, denotes the surface friction,

transformation matrix, T€ R™ denotes the input vector,
A(g)e R™ is a full rank matrix associated with the

constraints, A€ R™ is the Lagrange multiplier or the
vector of constraint forces, Equation (2) represents the
kinematic equality constraints that are independent of time
and q must be restricted to the nuil space of A(q). Assume
Z(g)e R™" ™ is a set of smooth linearly independent
vector fields spanning the null space of A(q). Then there

exists an auxiliary vector time function u(z)e R'""™ such
that for all ¢

q=Zgu@) (3)
where u has forms depending on the choices of Z{q) and

not necessarily with any physical significance.
In Fig. 2, an inertial Cartesian frame {O, X, Y} and a

body frame {P,X_, Y.} withorigin at the middle of the axle

of the driving wheels are attached. p=[x y A1 denotes a

posture vector; b is the half width of the axle of the driving
wheels; d is the displacement from the point P along the X,
axis to the center of mass; r is the radius of the driving
wheels; m,_ is the weight of the body (i.e. excluding the
driving wheels and their associated rotors); m, is the
weight of a single driving wheel (i.e. taking the associated
rotor into account); I, is the moment of inertia of the body;
I, is the moment of inertia of each driving wheel about the
axle; and [, is the moment of inertia of each driving wheel
about a wheel diameter. We assume the AMR only moves in
the direction normal to the axis of the driving wheels (i.e.
satisfying the conditions of pure rolling and nonslipping).
The constraint of no lateral motion gives
yeosd—xsind=0 (4)
The constraints of pure rolling and nonslipping at the
driving wheels obtain
%cos@ + ysin@— b =rg, (5)
xcos@+ ysinf + b = rg, (6)
The generalized coordinate vector to characterize the AMR
can be taken as q =[x, v,8,@,,¢,1". The linear velocity v
and angular velocity @ in the body frame can be computed
as
v =xcosf + ysing,and @=6 (7)
The relationship between ¢, , @, and v, @ can be
obtained by substituting (7} into (5) and (6) as
rg, =v-bw,and rg =v+bw (8)
Rewrite (4), (3) and {(6) as the following matrix form

sind —cos& 0 0 O
Alg) =cos@ sin@ -p —r 0| D
cos@ sinéd b 0 -r
Choosing u =[v @[ in(3), we obtain
¢ 17
cosfd sind 0 — —
Z(q) = T an
0 0 1 ﬁP— ﬁ
r r



The Lagrange formalism of the AMR dynamics obtains the
following parametric matrices

m 0 -mdsing 0 0

0 m mdcosd 0 0O
M(q) ={ - m dsingd mdcosf ! 0 0 ’

0 0 0 [, 0

0 0 0 i,

0 0 —mdfcos © O cos@ cosé

0 0 —-mdfcos@ 0 O’ 1 sm@  sind an
Cig,9)={0 0 0 0 0| Bl@=—|-& b

00 0 00 Troo

00 o] 00 0 r

The un-modeled dynamics and disturbance are expressed as
h(q,q) =F(@) +G(q) +7, (12)
and ||h(q,q)|| < &y is assumed.

B. The Self-learning Controller

Complexity resulted from un-modeled nonlinear
dynamics and disturbance makes the AMR controller design
a challenge task. Without an accurate mathematical model,
conventional feedback or feed-forward linearization
approach is usually difficult to obtain an appropriate
solution. Therefore, we use as adaptive fuzzy system with
self-learning mechanism to construct the controller. The
linear and angular velocity is each controlled by an adaptive
fuzzy system, which is an extension of Sugeno fuzzy model
for the neuro-fuzzy system [12] [13]. Each adaptive fuzzy
system has two inputs (x, ¥), one output z and with a
first-order Sugeno fuzzy model. Each fuzzy rule base is
composed of if-then rules as,

Rule i

Ifxis Ajand y is B, then fi= px+gy+r;, i=1,-- N (13)
where the consequence parameters are
0=[p,q,. 1 Px-dy-Tv} - Using center-average
defuzzification, the overall output of this Sugeno Fuzzy
System is obtain as,

N - W,
2= wf, with w,=—— (14)
=l

ij
=l
where w, = i, (X} H, (¥) is a product of memberships.

Each membership function is defined as,

1
(D) = (19)
X—cC.
1+ [ 2 ]
a;
where the premise parameters are

B=lay, by sy, bayo o3y 1"

Given enouigh training patterns, the consequence and
premise parameters of the adaptive fuzzy system can be
determined by a forward training pass foliowed by a
backward training pass [13]. In the forward training pass,
the premise parameters are kept unchanged and the
consequence parameters are estimated by using the recursive
least-squares estimation [14].
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Let {h(k),z(k},k =12,---,K} be K training patterns

with  h{k)8=z(k) ., where h(k)=[x(k) y(k)1]
Dy P2 Py

and @={q, g, gy |. Then the recursive least-squares
rl r: e ’:N

estimation of the consequence parameters is
Ok +1) = 8(k) + P(k + Dh7 (k + D[ z(k + 1) —h(k + DO
= 8(k) + PUORT (% + OIL+ hk + DPKORT (k +1)] ™

[z(k + 1) - hik + )B(k)]
(16)

h() | [h())

where P(k)= . In order to obtain an

hk) | | hik)

initial condition, it is necessary to choose an initial value for
k =k, such that P(k,) is nonsingular.

In the backward training pass, with the estimated
consequence parameters, the efror signals propagate
backward and the premise parameters are updated by using
the back-propagation algorithm [15]. The overall squared
error is obtained by

N N

1 . o2

E=2 E =3 Jld-z@) (7
i=1 i=1

where d(i) denotes the desired value. The correction A¥,

applied to the premise parameter #,(k) at the kth iteration is

defined by the delta rule

BE(K)
ARy =-n—"" (18
(k) =77 35,0 )
where 7 is the learning rate and
Giela,b,c -ty bay, Cayh .

In the experimental AMR, the linear and angular
velocities are chosen as the training inputs (x, y) of the
adaptive fuzzy systems. The corresponding forward and
rotation control voltages (1~5 volts) are the desired outputs
of the linear and angular velocity controllers, respectively.
Each input and output variable is assigned with six
membership functions. Therefore, the overall control
system has eighteen membership functions for the linear
velocity controller (two inputs and one output) and another
eighteen membership functions for the angular velocity
controller. Each output membership function is a first-order
polynomial. Totally, 121 training patterns are collected
during manual navigation. Fig. 4 shows these membership
functions obtained before and after the training. Fig. 4 (a)
and (b} are initial setting of the membership functions for
the two input variables (both linear and angular velocity
control systems). Fig. 4 (c) and (d) are the trained
membership functions of the two input variables of the
linear velocity controller. Fig. 4 (e) and (f) are the trained
membership functions of the two input variables of the
angular velocity controller. The average training errors of
the linear and anguiar velocity controllers are 0.0011501
and 0.0014683, respectively.
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Fig. 4 (a) and (b) initial setting of the membership functions;
(¢) and (d) the trained membership functions of the linear
velocity controller; (e} and (f} the trained membership
functions of the angular velocity controller.

(e)

I11. AUTONOMOUS VISUAL NAVIGATION IN DYNAMICAL
ENVIRONMENT

A. Constructing Local 3D Maps from Stereo Images

Given a pair of rectified stereo images, stereovision
matching tries to find all pairs of correspondences on the
conjugate epipolar lines. With these correspondences, a
disparity map and then a local 3D map can be constructed.
Here, area-based matching, which collects the coherent
collections of pixels for stereovision matching is used [1].
The correlation criterion is chosen as

Clx,y)=
s, (xtivd,y+ =5, xS, (x+i, v+ H-F,)
argmax LY
. \E(&(mw,yu)—ifxJZ(sr(xﬂ:wj)—E,)’
ijaW LjEW
(19)

where d represent the disparity, S, and S, are the intensity
values of the corresponding pixels, W is the comparative
window, and x and y are the coordinates. S, and E denote

the average intensity values within the window W. Criterion
(19) has the properties of scaling and shift invariance. The
disparity between two corresponding points is found by
minimizing C{x, y). Large disparity indicates a point close to
the camera and vise versa.

Given the focal length and baseline length, a depth value
can be calculated from the disparity. Fig. 5 shows the
triangular positicning under the ideal epipolar geometry.
The world coordinates of a point P(X, ¥,Z) are calculated as

(X,Y,Z)=(f X, fY _Bj )
Z zZ X,-X,
where fis the focal length, B is the baseline length, X, and X,
are the horizontal image coordinates in metric unit, ¥, is the
vertical image coordinate in metric unit,

(20
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B. Constructing Artificial Potential Field on a Local 3D
Map

The spatial information on a local 3D map allows us to
divide the map into free and obstacle cells by using the
approximate cell decomposition method [16]. On the free
cells, the artificial potential field is established to determine
a
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Fig. 5 Relationship between an object point and the image
points on the ideal epipolar geometry.

path. The artificial potential field, which measures potential
energy by a scalar function, is defined as the sum of an
attractive and a repulsive potential field {7]. Obstacles are
modeled as emitting a repellant force and the goal position
as emitting an attractive force to the robot. When the robot is
at the goal position, its potential energy is minimum. In
contrary, its potential energy becomes large as closing an
obstacle. Since the potential field inclines toward the goal
position, following the negative gradient of the potential
energy can usually obtain suitable paths. The point of
minimal potential is ideally the goal position.

The attractive filed I/, (q) should increase as @ moves
away from g, The function chosen for the attractive field
in two-dimensional is a ‘parabolic well’ form as,

U@ = Cfa= ] - 3 Gl 5 4 3= 371 @D

where C, a constant

is of the attractive force,
Dy =[50 ¥, 1" is the goal position and q=[x,y]"
represents the interesting point.

The repulsive field /. (q) should increase as g moving

rep
toward an obstacle. The following piecewise equation is
chosen to evaluate the repulsive field:

u,,p(q); %”[3‘(15’;0} ifd@<d, (22)

0 if d(q)>d,
where d(q) is the current minimum distance between the
robot and obstacles, d, is the maximum range of the
repulsive force, and 7 is a constant. If q approaches any

obstacies, I/, , (q) approaches oo,

rep
The potential field function is

Uig)=U, @ +U, @ 23)
The potential field method of motion planning involves
medeling the robot as a point moving under the influence of
a potential field that is determined by the set of obstacles and
the goal position. Given initial position g, and goal



pOSition Q... an algorithm to find a path to approach the
goal position by the gradient descent method is

Stepl:q,, =q; + &M, with q, =q,,;,
[Fa) (24)

Step 2:Stop if q;,; = q . » Otherwise repeats Step 1.

where F {q) =—VU(q) represents the potential force, &, is

the step size. The step size should be chosen so small that no
collision would occur when the robot moves along a

straight-line segment between ¢, and q,,,.

When the stereovision does not see the goal position, a
relay position q,,,, is chosen on the local 3D map by

= Max
ECq,

14U, (q)
The relay position becomes a substitution of the goal

position for determining a path in current local 3D map. The
evaluation function y considers both effective exploration

satisfying,

of environment and safety. A position far away from the
robot and the obstacles is a candidate.

Simulation results of finding a relay position and an
approaching path are presented below. A simulated
environment is shown in Fig. 6. The region observed by the
stereovision is indicated by a triangle. Outside the triangle is
seen as obstacles. Using (25), a relay position is found as the
peak in Fig. 7 and marked in Fig. 6 as the goal position. Fig.
8 (a) and (b) show the repulsive and attractive fields,
respectively. The resultant potential field is presented in Fig.
8 (c). The obstacles have large potential energy and the relay
position is the local minimum,

C. Motion Strategies

Four motion strategies are designed to deal with
encountering a huge obstacle ahead, avoiding collision,
avoiding moving along a passed path, and leaving an
entirely searched area.

Strategy 1: A shortcoming of the potential field method is
the emergence of local minimum or trap situations (i.e.
U-shaped obstacles). Another one is the oscillating behavior
in the presence of the obstacles [17]. To avoid these
situations, the robot is commanded to rotate in situ for a
specified angle whenever the distance between the robot and
a relay position is too small.

Strategy 2: If a relay positien is so close to an obstacle that
the next path might oscillate or collide with the obstacle.
This relay position is neglected and the robot is commanded
to rotate in situ for a specified angle to find another relay
position.

Strategy 3: Each passed path is seen as a virtual obstacle.
The repulsive property of a virtual obstacie is the same as a
real one so that a previously passed path will not be
repeated.

Strategy 4: 1f the robot has been successively commanded to
rotate in sifu according to either Strategy 1 or 2 for M
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(specified by designer) times and no suitable relay position
is found, next rotation will reverse the direction. A direction
reversing cancels all the virtual obstacles and starts a fresh
search. Fig. 9 shows the simulation result of searching for an
outlet (i.e. goal position) in a maze. Fig. 9 (a) is the maze.
The walls are presented as the black areas. The asterisk mark
indicates the outlet. The triangle indicates the area observed
by the stereovision. The robot must move inside the maze
without colliding with the wall. Fig. 9 (b) shows the track of
a successful search by applying the motion strategies.
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Fig. 9 Simulation of searching for outlet.

IV. EXPERIMENTAL RESULTS

Pictures in Fig. 10 show consecutive moves of the AMR
along a hallway. The linear velocity of the AMR is
maintained at 0.2 m/s. Fig. 10 (a) is a rear view of the AMR
at the starting point, where the stereovision finds no obstacle



inside the effective view range (2.5m), and decides to go
straightforward. During the forward move, a human runs
into the hallway and stays beyond the AMR as shown in Fig.
10 (b}. The AMR gets a new pair of stereo images at the first
relay position. The stereovision finds from the local 3D map
that an obstacle, the human, presents. Then, the path
planning produces a new path to avoid colliding with the
human. Fig. 10 (c) shows the AMR steers itself to bypass the
human. Fig. 10 (d) shows the AMR has successfully avoided
colliding with the human. Fig. 11 shows the track of the
AMR in this experiment. The AMR starts at position (0, 0)
and stops at position {3.43, 1.43). The triangles indicate the
3D visible regions. The left triangle represents the first 3D
visible region. The right triangle represents the second 31>
visible region. Inside the right triangle, an obstacle (gray
area) representing the human is found. The resulting posture
is 0.05 m at the maximum.

V. CONCLUSION

Main techniques of autonomous mobile robot navigation
based upon stereovision gunidance have been developed
successfully in this paper. Nevertheless, to obtain 3D spatial
information efficiently from images captured by
un-calibrated stereo cameras is still a challenge. Executing
the procedures of image rectification and stereovision
matching are time consuming. In the experimental system,
the stereovision takes several seconds to complete the
construction of a local 3D map. This causes the AMR can
only move in a point-by-point manner instead of
consecutively. Therefore, efficient method to achieve
real-time 3D visual perception should be developed in the
future. Motion planning by minimizing the potential energy
of the mobile robot has been shown to be reliable. Local
minimum fraps and some other unfavorable conditions can
be avoided by suitably designing the motion strategies. Due
to the unknown dynamics and complexity, the control design
of the AMR is difficult. The adaptive fuzzy system with
self-learning mechanism provides a good solution to this
problem. The results from computer simulations and
experiments have verified the feasibility of the proposed
design.
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