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Abslract - The multimode TRL calibration method is 
known as an approach for the measurement of multi- 
conductor transmission line devices. The propagation 
constants of different modes propagating along the multi- 
conductor transmission line must be different using thii 
method. However, in general multi-port networks, the 
propagating constants at each port may be equal. We here 
then present the thru-line-symmetry (TLS) calibration 
method for the calibration of the equal propagation constant 
case. The calibration equations with the associated 
calibrators for on-wafer scattering matrix measurement of 
four-port network are developed. The measured scattering 
matrix of a branch line coupler using proposed calibration 
method shows good agreement with simulation. This method 
can also be extended for the calibration of multi-port 
networks. 

Index Terms -scattering parameters measurement, multi- 
port network, calibration. 

I. INTRODUCTION 

The TlU calibration method [l] has been widely used 
in the calibration of two-port networks. The multimode 
TlU calibration method proposed in [2] then gives a new 
formulation to deal with circuits with multiple conductors. 
In general, N signal lines with ground plane can support N 
modes propagating simultaneously on a multi-conductor 
transmission line. This method gives a concise 
formulation and multi-port calibrators to reduce the 
number of calibrators required as compared with [3]. 
However, in the formulation, propagation constants are 
assumed to be different among different modes. In a 
general multi-port network, one can combine certain 
physical transmission lines together and consider them as 
a single multi-conductor transmission line mathematically, 
The signal propagating in a transmission line can be 
considered as a mode. Therefore, for a multi-port network 
having the same transmission lines, the propagating 
constants are identical. The formulation of multimode 
TRL then has to be modified to deal with the case of equal 
propagating constant. In this study, we find that as more 
propagation constants become equal, more unknowns are 
required in the calibration process. Therefore, we 
developed a “symmetry” calibrator to provide more 
information than the “R” calibrator in the multimode TRL 

calibration method. In other words, it gives more 
equations for solving the additional unknowns. 

In the following, the formulation of proposed TLS 
calibration method is presented. The reasons for 
considering new symmetry calibrator are also addressed. 
The experiment arrangement, proposed calibrators and 
results are given in Sec. III. Finally, the conclusion is 
given in Sec. IV. 

n. FORMULATION 

In this section, the formulation for four-port scattering 
matrix calibration is described, because this is the 
maximum number of available ports of the network 
analyzer used in our laboratory. The formulation can 
however be generalized for networks with more than four 
ports without much difficulty. 

A. Generalized transfer and scattering matrices 

The device-under-test (DUT) shown in Fig.1 has four 
physical ports. Only one propagating mode exists in the 
transmission line where each physical port is defined. The 
signals propagating in these four transmission lines have 
identical propagating constants. One can combine 
physical ports 1 and 3 as the multimode port 1 and 
physical ports 2 and 4 as the multimode port 2. The 
selection of multimode port is arbitrary. The reference 
planes of physical ports and multimode ports are defined 
at the same location. The incident and reflected wave 
amplitude and the wave vector Ai and Bi of multimode 
ports are given as - -  

In the following equations, the capital letters are 
referred to matrices, while scalar quantities are denoted by 
lowercase letters. The same representation of general 
transfer matrix and scattering matrix in [2] are used here. 
According to the basic measurement arrangement shown 
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r - 7  in Fig.2, the measured transfer matrix M i s  related to the 
transfer matrices of error box A, DUT and error box B as 

M = ATB-l . (2) 

B. Thru-line-symmetry (TLS) calibration method 

In the following derivation, the ports numbers are 
referred to the multimode ports for convenience. 
Additional notice will be given when the physical ports 
are referred. From (2), the transfer matrix N,  of DUT 
will lead to the following measured transfer matrix M ,  as 

One can start with the “thru (or T)” and “line (or L)” 
calibrators. The transfer matrices of “T” calibrator N I  and 
“L” calibrator N2 are given by 

M ,  = AN,B-’ and N ,  = A-’MJ.  (3) 

- -- 
N -r ‘1 and ‘ - 0  z 

N2 = diag(e-”,e-”,e”,e”), (4) 

where Z denotes an identity matrix and 0 is the null 
matrix. y is the propagation constant and I is the line 

length. As in [2], P and Q are defined as P = N2N;’ and 

Q = M,M;’. Since P and Q are similar matrices, they 
have the same eigenvalues. A is a diagonal matrix with 
elements from eigenvalues of P or Q. Since Q is 
completely known from measurement, the unknown line 
length of “L” calibrator can be solved using these solved 
eigenvalues. 

The relation between P, Q and A is given as 
A = X-’PX = Y-lQY, (5 )  

where the columns of X (respectively, Y) are composed of 
the eigenvectors of P (respectively, Q). Since the 
eigenvectors are not unique, they are known except for a 
constant when the eigenvalues are distinct. As there are 
equal eigenvalues, they can be expressed as a linear 
combination of a set of solved eigenvectors. Since P and 
Q are fully known, one can find a set of their eigenvectors 
Xo and Yo . In addition, since A, =% , the first 
eigenvector (i.e., the first column of X )  in X can be 
written as a linear combination of the first and second 
eigenvectors in X,, . The second eigenvector in X can 
also be expressed as a linear combination of the first and 
second eigenvectors in Xo . However, the first and second 
eigenvectors in X should be linearly independent. 

Similar combinations can be applied for the third and 
the fourth eigenvectors in X . Therefore, X can be 
expressed as 

where Di and D2 are 2x2 matrices. The similar 
expression can be obtained for Y as 

r 

(7) 

where A, and A2 are 2x2 matrices. The partially 
determined A can then be expressed as .- - -  

A=YX-l=YoKX,=A,K,where K =  -‘ l“0 :2]9 

K ,  = A,@;’ and K2 = A,@;’ , (8) 
where A, is fully known while K remains unknown so far. 
The measurement of the “T” calibrator can also be used to 
partly derive B as B = M;’AN, = M;’A,K = B O K .  

In the multimode TRL calibration method, the k: 
matrix is a diagonal matrix with only four elements. 
However, in the equal propagation constant case, there are 
at most 8 non-zero elements in K matrix. Since there are 
more unknowns in K matrix, one needs a calibrator that 
can provide more information than the “R” calibrator in 
the multimode TIU. 

In this study, we propose to use a “symmetry (or S)” 
calibrator with the following properties: 
1. S,, = S,  and S,, = S:, . This is the same 

characteristics as the “R” calibrator. 
2. SI, = S,, and SI, = S,, . The subscripts here are the 

port number of physical ports. 
As the “S” calibrator is connected, its transfer matrix 
N3 is related to the measured transfer matrix M ,  by 

(9) 
where P = A,’M,Bo. Equation (9) can be divided into 
four 2x2 sub-matrices as 

N ,  = A-‘M,B = K - ‘ ~ ‘ M , B ~ K  = K - ’ P K ,  

. (10) I N ,  
a]=[ K:‘P,,K, KI’P,2K2 

N21 K;’P,,K, K;’P2,K2 
By using the property 1 of “S” calibrator, one can find an 
equationrelating Ki  and K ,  as 

where L = K2K;’ . Now there are four equations for 
solving four unknown elements in L. Since they are not 
linear equations, the solution might not be unique. We 
will discuss how to resolve the ambiguity problem later. 

Let’s assume a solution of L is found. As the solution 
is 4 ,  one can use it to solve Kl  . In the multimode TRL, 
Kl  is a 2x2 diagonal matrix. There are only two 

K2K;l&P2;’K2K;’ = L42P2;lL = -PGIPzl, (11) 
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unknowns to be solved. Since a constant term can be 
’ factored out, only one unknown remains in the four-port 
multimode TRL calibration method. r = r‘ provides one 
additional equation that can be used to solve the only one 
unknown in Kl . In the equal propagation constant case, 
there are three unknowns instead of one has to be solved. 
Therefore, one needs at least two more equations. The “S” 
calibrator can provide two additional equations. 

Since K ,  = fZ&l from (1 l), the left hand side of (10) 
can be written as a function of K, only. From the 
property 2 of “S” calibrator, one can find that 
N22,11 = N22,22 and N22,12 = N2,,, . This then gives two 
additional equations for solving IC,, The solutions for Kl 
might not be unique. For each solved L, and the 
corresponding Kl , one can calculate the scattering matrix 
of “S” calibrator. In our computer simulation, we found 
that one can determine the correct solution set of L,, and 
Kl from the a priori knowledge of the signs of scattering 
parameter phase terms of the ‘‘s” calibrator. As K is 
solved, the transfer matrix N, of DUT can be calculated 
from the measured transfer mattiX M, by using 

N ,  = K - ’ ~ ~ M , B , K .  

m. EXPERLMENT ARRANGEMENT AND RESULTS 

To measure a four-port network, one can directly use a 
multi-port vector network analyser such as Agilent 
E5071B or a two-port vector network analyser as 
proposed in [4] or the port reduction methods proposed in 

The test structure and proposed calibrators for on- 
wafer measurement are shown is Fig. 3. The circuits are 
fabricated on 8 mil thick Rogers R04003C substrate. 
Since the four probes on a probe station are located at 
north, east, south and west directions, a test structure 
shown in Fig. 3(a) incorporating 45” bends are used for 
the connection to probes. As the two reference planes are 
connected together, it becomes a “thru’? calibrator. The 
“line” calibrator is shown in Fig.3@). The “symmetry” 
calibrator is shown in Fig.3(c) by adding a transmission 
line at the midpoints of two transmission lines in a “line” 
calibrator. The length and impedance of this additional 
transmission line is not critical based on the requirement 
of “symmetry” calibrator. A branch-line coupler with the 
test structure as shown in Fig. 3(d) is used as a DUT to 
test the proposed calibration method. We use the Agilent 
E5071B four-port network analyzer to measure the four- 
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port scattering matrices of these networks. The network 
analyzer is first calibrated to coaxial ports using the 
Agilent N4431A-010 ECal. The proposed TLS calibration 
method is then used to de-embed the effects of test 
structure and probes. The de-embedded and simulated 
magnitude and phase results of the coupler are shown in 
Fig.4. They are in a good agreement. 

IV. CONCLUSION 

A novel TLS calibration method is developed for the 
equal propagation constant case in multimode networks 
measurement. A set of calibrators that is suitable for on- 
wafer four-port network measurement is described. The 
measured scattering matrix of a branch-line coupler shows 
good agreement with simulation. Although the 
formulation given is for four-port network measurement, 
this method can be extended to multi-port networks 
without much difficulty. 
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Fig.1 Representation of a four physical-port or a two multimode-port DUT. 
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Fig.2 The basic A g e m e n t  for four pok DUT measurement. 
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structures (a) in “thru“ calibrator, (b) with “line” calibrator, (c) with “symmetry” calibrator, and 
as DUT. Note only the physical ports are labelled. 
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Fig.4 Results of measured (MSij) and simulated (SSij) scattering parameters of the branch-line coupler. 
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