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ABSTRACT 

There exists a close relationship among 
digital one/half band filters, low/high order 
different iators and di screte/different i at ing 
Hilbert transformers. The purpose of this paper 
is to present a complete picture of their inter- 
relationships and conversions between each 
other. A useful table and some block diagrams 
have been developed for their impulse response's 
connections, and a design example is also given 
for illustration. 

I. INTRODUCTION 

Conventionally, we often use the well-known 
McClellan-Parks program CllC21 to design the FIR 
digital filters, differentiators and Hilbert 
transformers independently; Also recently the 
eigenfilter approach C31[41[51 has been developed 
to design these filters, differentiators and 
Hilbert transformers differently in each inde- 
pendent case. However, these designs can be 
closely related to each other. This paper is to 
present their relationships and unifies them by 
means of a useful table and some block diagram. 

The conversions between digital Hilbert 
transformers and one/half band filters have been 
developed by Jackson C61 , Vaidyanathan and 
Nguyen [71. This paper further exploits their 
relationships to differentiating Hilbert trans- 
formers C81, low/high order differentiators and 
the conversions between each other. 

11. INTERRELATIONS AMONG ONE/HALF BAND FILTERS 
AND HILBERT TRANSFORMERS 

The overall block diagram for illustrating 
the relationships among one-band filter (B I ) ,  
half-band filter (Bt), Case 3 symmetric Hilbert 
transformer (H3), Case 4 Hilbert transformer 
(H4), differentiating Hilbert transformer (Hd) 
and first-order differentiator ( D I )  are given in 
Fig.l(a) in which the transfer functions and its 
impulse responses for each filter are also 
characterized in this block diagram; and the 
derivations of which are described as below. 
In C61, Jackson had shown that 

1(-1)22bt(n) n even 
l o  n odd 

n-N- 1 

( 1 )  h3(n)= 

and 
n-N-1 - 

{:-I) Sh3(n) n even 

And Vaidyanathan and Nguyen C7l found that 

Sbl (9) n even c n=N 

b+(n)= 0 n odd (2) 
n=N 

bL(n)= 0 n oddsN (3) 

and 
b l  (n)=2bL(2n) n=0,1, ..., N (4) 

I n  the following, we will further exploit 
the relationship between differentiating Hilbert 
transformers and Case 3 symmetric Hilbert trans- 
formers, and the conversions of Cases 3 and 4 
Hilbert transformers L91. 

Recently Cizek proposed a new differentiating 
Hilbert transformer CBI, the output of which is 
the derivative of the Hilbert transform of the 
input signal. This signal is useful for the 
evaluation of the instantaneous frequency by 
means of an analytic signal. 

The amplitude responses of a Case 3 symmetric 
Hilbert transformer and differentiating Hilbert 
transformer can be represented by 

N 

n= 1 
ii3(w)= c fi3(n)sinnw ( 5 )  

and I 

respectively, where 
fi3 (n ) =2h3 ( n ) n=l,. . . ,N 

and 

( 8 )  

From E q .  (6), the differentiating Hilbert trans- 
former can be implemented by cascade connection 
of a differentiator and a Hilbert transformer; 
However, the direct use of differentiating 
Hilbert transformer is more accurate and efficient 
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than the above cascade scheme. 

The integration of Eq.(5) along w-axis will 
aEproximately lead to the amplitude response 
-Hd(w)t n/2, hence we can get the following 
conversions: 

n=N I: 
and 

(N-n)hd(n) n even 
(10) 

(0 n odd 
h3(n)= 

If we reduce the sampling rate on the Case 
3 symmetric Hilberttransformer's impulse responses 
by a factor of 2, this decimation process [IO] 
would correspond to extracting every 2nd sample 
of the discrete sequences. Since every other 
impulse response sample of the symmetric Hilbert 
transformer is equal to zero, by taking out 
these zero-valued impulse response samples, the 
decimated version of Case 3 symmetric Hilbert 
transformers will become the Case 4 Hilbert 
transformers with even length very interestingly. 
If we reverse the above process by inserting a 
zero-valued sample between each impulse response 
sequence of the Case 4 Hilbert transformers; 
then the Case 4 Hilbert transformers will become 
Case 3 symmetric Hilbert transformers after this 
interpolation process 1101. 

(0 n odd 

So there exists 

h4(3 n even 
(11) h3(n)= 

h4( n )=h3(2n) n=O,1, ..., N (12) 
and 

The transition bandwidth of Case 4 Hilbert 
transformer is equal to twice of that of Case 3 
symmetric Hilbert transformer, and the ripple is 
the same in these two type Hilbert transformers. 

111. DERIVATIONS OF EVEN LENGTH LOW/HIGH ORDER 
DIFFERENTIATORS FROM ONE-BAND FILTERS 

Low/high order differentiators are very 
useful for calculation of geometric moments and 
for biological signal processing. Recently the 
modified McClellan-Parks program [2l and the 
eigen-approach E51 are proposed for designing 
these digital differentiators. This section is 
to point out that these designs can be easily 
derivated from the one-band filters without 
involving any complicated time consuming optimi- 
zation procedures. 

Suppose the transfer function of even 
length, i-th order differentiator is characterized 
as 

N 

i =O 
Di(Z)= C di(n)Zmn 

where N is an odd integer. 
For an odd-order Case 4 differentiator, the 
amplitude response of Eq. (13) is 

N+ 1 - 
0 

Gi(w)= L f i  C di(n)sin(n-3)ws'(jw)i, i odd (14) 
n= 1 

and for an even-order Case 2 differentiator, the 
amplitude response is 

Nt 1 - 
A 2  
Di(w)= ai(n)cos(n-t)wN-(jw)i, i even (15) 

n= 1 
A where d.(r1)=2d~(~-n), Nt1 

1 
Nt1 n=1,2, ...,- 2 

Also, suppose the amplitude response of an even 
length one-band filter is represented by 

Nt 1 - 

(17) 
A 2 A  Bl(w)= C bl(n)cos(n-3)w 

A Nt 1 Nt 1 b (n)=2b (--n) n=1,2, ...,- 1 1 2  2 

n= 1 
where 

(18) 

1 ) FIRST-ORDER DIFFERENTIATOR: 
The integration of Eq.(17) along the w-axis 

will lead to the amplitude response of the 
corresponding first-order differentiator, then 
we can get 

Nt 1 n=1,2, ...,-- 
* 

dl(n)=- n-t 2 
From Eqs.(l6), (18) and (19), it is easy to 
derive the conversions 

(20) bl (n)=(-p)dl(n) N n=0,1,. . . ,N 
and 

bl (n) 
dl(n)=- n=O,1, ..., N N 7i-n L 

Due to the inherent zero magnitude response 
at folding frequency for Case 2 one-band filters 
[91, this will be suitable for designing the 
nonfull-band differentiators. 

By the above description and those conver- 
sions in Section 11, it is easy to establish the 
relationships among one/half band filters, 
f irst-order differentiators and the discrete/ 
differentiating Hilbert transformers. Fig.l(a) 
shows the block diagram for connecting these 
relationships. 
2) SECOND-ORDER DIFFERENTIATOR 

Similarly, the amp1 itude response of a 
second-order differentiator can be derived by 
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integrating the amplitude response of the first- 
order differentiator (see Eq.(14)) along w-axis, 
i.e. 

N+1,  
2 2dl(n 

__ 
n=l n-t 

N+1 
2, 

dw=-U;{ c dl(n)sin(n-+)w)dw 
n=l 

n=l n-t 
6 - Ntl 

.. bl(n) 2 ,  
Substitute dl(n)=- (see Eq.(19)) and c bl(n)e 

cos(n-+)wwl (one-band frequency response is 
approximately equal to 1 except near the folding 
frequency) in the above equation, we get 

n-+ n=O 

Nt 1 N+1 Nt 1 

n=l (n-t) n=l (n-+)2 n=O 

- 
~ 2 2il(n) T & l ( n )  2 ~ 

D2(w)d - cos(n-+)w-[ c ___ 1.C c bl(n)e 

cos(n-+)wI 
Nt 1 Nt 1 - 
2 2il(n) T2Sl(n1) 

= c c--( c ~ ) b (n ) ]cos (n-t ) w 
n=l (n-+)z n'=l (nl-4)' 

(23) 
Using Eqs.(l5), (16) and (18), we can get the 
filter coefficients of the second-order differen- 
tiator from the impulse response of one-band 
filter by the following relation 

-2b1(n) N 2b1(n') 
d9(n)=- t[ c ~ Ib,(n), n=0,1, ..., N 

3) THI RD-ORDER D I FFERENTI ATOR 
For third-order differentiator, its ampli- 

tude response can be obtained as 

63 (w) ( W) dw 

and its impulse response is 
-3!b1(n) N 3!b1(n1) bl(n) 

d3( n)=- tc c ~ I-, n=O, 1,. . . ,N 
N n'=O (!-n I ) 2 --n N 

(26) (2-n 1 2 

The relationships and the formulations 
between the one-band filters and these high- 
order differentiators are illustrated in Fig.l(b). 

For i>3, the impulse response coefficients 
of higher-order differentiator can be derived by 
similar procedures described above. Observe 
that the deviations of even-order differentiators 
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(a one-band filter can be taken as a zero-order 
differentiators) is larger than that of odd-order 
differentiators, because we approximate directly 
a unit constant by the magnitude response of a 
one-band filters, for example as in Eq.(23). So 
the even-order differentiators from this method 
are generally inferior to the odd-order ones. 

I V .  DESIGN EXAMPLE 

A numerical example is given here for clear 
illustration. First we can design a length 30 
one-band filter with cutoff frequency 0.46 by 
the McClellan-Parks program [I]. From TABLE I 
we can easily get the filter coefficients of the 
half-band filter, first-order differentiator, 
discrete/d ifferent iat ing Hi 1 bert transformers 
and first to third order differentiators by this 
one-band filter's impulse response. Their 
frequency responses are shown in Fig. 2 for 
illustration. 

V. CONCLUSIONS 

In this paper, digital one/half band fil- 
ters, low/high order differentiators and discrete/ 
differentiating Hilbert transformer have been 
shown in close relation to each other. A useful 
table and block diagrams have been developed for 
unifying their impulse's connections, and a 
design example is also given for illustration. 

REFERENCES 

C11 J.H. McClellan, T.W. Parks and L.R. Rabiner, 
"A computer program for designing optimum 
FIR linear phase digital filters," IEEE 
Trans. Audio Electroacoust vol.AU-21, 
pp. 506-526, Dec. 1973. 

[2l C.A. Rahenkamp and B.V.K. Vijaya Kumar, 
"Modifications to the McClellan, Parks and 
Rabiner computer program for designing 
higher differentiating FIR filters," IEEE 
Trans., Acoust., Speech, Signal Processing, 
vol.ASSP-34, pp.1671-1674, Dec. 1986. 

[31 P.P. Vaidyanathan and T.R. Nguyen, "Eigen- 
filters: a new approach to least-squares 
FIR filter design and applications including 
Nyquist filters," IEEE Trans. Circuits 
Syst., vol.CAS-34, pp.11-23, Jan. 1987. 

41 S.C. Pei and J.J. Shyu, "Design of FIR 
Hilbert transformers and differentiators by 
eigenfilter," IEEE Trans. Circuits Syst., 

51 S.C. Pei and J.J. Shyu, "Eigenfilter design 
of higher-order digital differentiator," 
IEEE Trans. Acoust., Speech, Signal Proces- 
sing, vol.ASSP-37, pp.505-511, April 1989. 

61 L.B. Jackson, "On the relationship between 
digital Hilbert transformers and certain 
low-pass filters," IEEE Trans. Acoust., 
Speech, Signal Processing, vol.ASSP-23, 

[71 P.P. Vaidyanathan and T.Q. Nguyen, "A trick 
for the design of FIR half-band filters," 

vol.CAS-35, pp.1457-1461, NOV. 1988. 

pp.381-383, Aug. 1975. 



1.2 a (c)z 
$ 0 . 0  

IEEE Trans. Circuits Syst., vol.CAS-34, 
pp.297-300, March 1987. 

[81 V.V.  Cizek, "Differentiating FIR Hilbert 
transformer", Proc. of 1989 URSI Int'l 
Symp. on Signals, Systems and Electronics, 
Erlangen, Fed. Rep. of Germany, Sept. 1989, 

[91 L.R. Rabiner and B. Gold, Theory and Appli- 
cation of Digital Signal Processing, Engle- 
wood Cliffs, NJ: Prentice-Hall, 1975, 
pp.168-177 and pp.81-84. 

Cl01 A.V. Oppenheim and R.W. Schafer, Discrete- 
Time Signal Processing, Englewood Cliffs, 
NJ: Prentice-Hall, 1989, pp.101-112. 

pp.697-700. 

one-band filter 

0.0 0.5 

Noinuw FRMJEN~~ 

Differentiating 
Hilbert transformer 

0.0 La 0.5 

1.1 

Case 4 
Hilbert transformer 

0.5 

3.2 

Second-order differentiator 30.0 

0.0 
0.0 0.5 

0.0 0.5 

Third-order differentiator 

D.0 Dl 0.5 

n-o ' 
One-band I filter I 

N : odd integer 

First-order Second-order Third-order - - 
differentiator differentiator differentiator 

- I 

! dl(n)Z-" 
Fin. 1 

n:o .-, 
HORNNIZED FREOUEK( hORwALlZm FREQUENCY 

pig. Amplitude pespoT.ses of (a) or.e-band prototype filter, and 
( b )  - (h): its derivated filters. 

Block diagram for illustrating the relationships among onelhalf band filters, lowerlhighf 
order differentiators, and discreteldifferentiating Hilbert transformers, in which the 
representations of lable numbers are tabulated in TABLE I. 
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