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stract 

In this paper? various symmetric and antisymmet- 
ric 2-D sequences are used to  design quadrantally 
syrnmetriclantisymmetric 2-D filters. It is shown 
that  there are sixteen types cases to  be considered 
according t o  the symmetry/antisymmetry of 2-D 
sequences in both directions and their filter lengths 
( even or odd ).  

. Introduction 

Conventionally, the design of linear-phase 2-D 
FIR digital filters is concentrated on the class of 
quadrantally symmetric filters, such as circular fil- 
ters, fan-type filters etc [l]. A 2-D sequence, which 
is symmetric in both directions, is required to  re- 
alize such quadrantally symmetric filters. 

In this paper, we will start  from the discus- 
sion of the symmetric properties of 2-D sequences 
to  disclose their applications for designing quad- 
rantally symmetric/antisymmetric linear-phase 2- 

D FIR digital filters by the eigenfilter approach, 
which has been used successfully t o  design linear- 
phase 1-D filters [2][3] and 2-D quadrantally sym- 
metric filters [4]. It is shown that  there are sixteen 
types cases to  be considered according t o  the  sym- 
metry/antisymmztry of 2-D sequences in both di- 
rections and their filter lengths ( even or odd ). 
The corresponding types of amplitude responses 
are tabulated into a complete table if these 2-D 
sequences are used to  realize 2-D FIR filters. Also, 
the definitions of quadrantal-plane, half-plane and 
full-plane filters are described. 

11. Symmetric Properties of 2-D 
Sequences 

Let X be an NI x N2 2-D sequence which is rep- 
resented in a matrx form with its elements be- 
ing denoted by z(nl ,n:!) ,  n1 = O,l,...,Nl - l, 
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~ ( 1 2 1 ,  122) = z(N1 - 1 - 121, 122) 0 5 121 5 N I  - 1 ,  
05122 5 N 2 - 1 ,  

(2) 
we call X an even-symmetric 2-D sequence in n1- 
direction; and if 

z(n1, 122)  = -z(N1 - 1 - 121,122) 0 5 711 5 N1 - 1, 
0 5 122 5 Nz - 1 ,  

(3) 
the sequence is called an odd-symmetric 2-D se- 
quence in nl-direction. Similarly, the same case 
exists for n2-direction. Then quaadrantally symmet- 
ric or antisymmetric 2-D sequences can be divided 
into four major types: 

Type I: even symmetry in both n1- and 722- 

directions, i.e. 

z (n1 ,nz)  =z(N1 - 1 - n 1 , n ~ ) = z ( n 1 , N 2 - 1 - n 2 )  
O<nl < N I - 1 ,  O < n 2 L N z - l .  

Such an evev-even sequence is denoted by Xee. 

symmetry in na-direction, i.e. 

(4) 

Type 11: even symmetry in nl-direction and odd 

z ( n l , n z ) = z ( N ~  - 1 - n l , n z ) = - z ( n i , N 2 - l - n z )  
0 5 %  < N 1 - 1 ,  O < n 2 < N 2 - 1 .  

( 5 )  

Type 111: odd symmetry in nl-direction and 
We denote such an even-odd sequence by Xe,. 

even symmetry in n2-direction, i.e. 

~ ( n l ,  n2) = - z ( N I  - 1 - 7 ~ 1 ,  n z )  = z(n1, Nz - 1 - n2)  
0 5 nl 5 NI - 1,  0 5 nz 5 N2 - 1. 

(6) 

Type IV: odd symmetry in both nl-  and n2- 
We denote such an odd-even sequence by Xoe .  

directions, i.e. 

~ ( n i , n 2 ) = - z ( N i  - 1 - n l , n z ) = - z ( n l , N z - 1 - n ~ )  
O 5 ni 5 N I  - 1, O < 7 ~ 2  < N 2 - 1 .  

(7) 

We denote such an odd-odd sequence by X,,. 
For any real NI x N2 2-D sequence X, it always 

can be decomposed into the above four type 2-D 
sequences, i.e. 

111. Sixteen Types of Quad- 
rant ally Symmetric Linear- 
phase FIR 2-D Filters 

The frequency response of a 2-D FIR digital fil- 
ter with its impulse response h(nl,n2),  n1 = 

0,1,  ... , N I  - 1, n2 = Q,1, . - e ,  NZ - 1 can be char- 
acterized as 

Nq -1 N7-1 
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where where 

0 Type17 
1 Type I1 and Type 111, (15) 
2 TypeIV,  

and f i ( w l , w 2 )  is a real-valued function. Notice 
that by excluding the linear-phase part in (14), 
the frequency responses are real-valued functions 
for Type I and Type IV sequences, and are 
imaginary-valued functions for Type I1 and Type 
I11 Sequences. For example, if h ( n l , n 2 )  is a Type 
1 2 - D  sequence and N I ,  N 2  are odd integers, then 

N -1 N -1 a(O,O) = h(*,+) 
a(0 ,na)  = 2 h ( v ,  - n 2 )  

a(n1,O) - - 2 h ( F  - n I , v )  

n2 = l,...,l%d 
2 

n 1  = l , . . . ,  

a ( n I , n 2 )  = 4 h ( v  - n 1 ,  - 722) 
N -1 n 1  = 1, . . . ,+- ,  

n2 = 1, . . .  Nz-1 ’ 2 .  

(17) 
Therefore, according t o  the four types of 2-D 
sequences discussed above and their even /odd 
lengths (NI  x N 2 ) ,  there are sixteen different kinds 
of I ? ( ( o i , w 2 )  which are tabulated in Table I. The 
relationships between the coefficients a(n1, n 2 ) s  in 

f i ( q  , W Z )  and h ( n 1 ,  n 2 )  can be derived easily. 
As in the spatial-domain case, any magnitude 

response H(w1 , ~ 2 )  can be similiarly descomposed 

H e e ( w l , W 2 )  = H e e ( - W 1 , W 2 )  = k e e ( ~ ,  - ~ 2 )  

= gee(-@* 9 - @ a ) ,  

= -fieo(-wl, - 0 2 1 ,  

H o e ( ~ 1 , ~ 2 )  = - H o e ( - ~ , w 2 )  = H o e ( w ~ , - ~ , )  

= - H o e ( - W  -@2)  

(19) 
z e 0 ( W 1 , ~ 2 )  = H e 0 ( - 0 1 , w z )  = - H e o ( u ~ ,  - 0 2 )  

w >  

(211 
and 

H o o ( w , w 2 )  = -HfJo(-w1,w2) = - f foo (U1 ,  -wz) 

= H O f J ( + l )  +2) .  

(22) 
It is noted that  f i e e ( w l , 6 3 2  1, 
f i e o ( W 1 , @ 2 ) ,  f i o e ( u 1 7 u 2 )  and f i o o ( ~ 1 7 ~ 2 )  can be re- 
alized by Type I, 11, I11 and IV 2-D sequences, 
respectively. Hence given a desired magnitude re- 
sponse, we can realize it by either a single type 
2-D sequence or several mixed type 2-D sequences. 
In this paper, the linear-phase 2-D FIR filters are 
divided into three classes as below: 

Y Quadrantal-plane filter: the filters which 
can be realized by only a single type 2-D se- 
quence. 

e Half-plane filter: the filters which can be 
realized by synthesizing two types 2-D se- 
quences. 

0 Full-plane filter: The filters which can be 
realized by synthesizing three or four types 2- 
D sequences. 

into four parts in frequency domain as below: 

For example, a full-plane filter with the desired 
response and its ingredients as shown in Fig.l(a). 
De,  and Do, can be synthesized by using Type 
I and Type IV 2-D sequences respectively, and 
De,  and Doe can be approached by using Type I1 
and TvDe I11 2-D seauences. Fig.l(b) shows the 
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resultant amplitude response with filter length 27x 
27, which is designed by the eigenfilter approach 

[41. 

PV. Conclusions 

- - 
In this paper, we have used the symmet- 
ric/antisymmetric 2-D sequences to  design quad- 
rantally symmetric linear-phase 2-D FIR filters. It 
is shown that  there are sixteen type cases t o  be con- 

1 
O&..“*I 

sidered according t o  the symmetry/antisymmetry 
of 2-D sequences in both directions and their fil- 
ter lengths ( even or odd ). The definitions of 
quadrantal-plane, half-plane and full-plane filters 

are also defined. 
DA*. .3 I  
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Figure 1: Design of a full-band 2-D filter. (a) De- 
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Table I: l?(wl,wz) of 2-D Sequences with Length NI x N 2 .  (L;  = 

L; = 9 for even N;, i = 1,2.) 

for odd N; and 

'ype Sub-type NI, NZ I H ( W 1 , W Z )  
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