Symmetric Properties of 2-D Sequences and Their Applications for Designing Quadrantally Symmetric Linear-Phase 2-D FIR Digital Filters

Soo-Chang Pei
Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan, Rep. of China
Jong-Jy Shyu
Department of Computer Science and Engineering
Tatung Institute of Technology
Taipei, Taiwan, Rep. of China

Abstract

In this paper, various symmetric and antisymmetric $2-\mathrm{D}$ sequences are used to design quadrantally symmetric/antisymmetric 2-D filters. It is shown that there are sixteen types cases to be considered according to the symmetry/antisymmetry of 2-D sequences in both directions and their filter lengths (even or odd).

I. Introduction

Conventionally, the design of linear-phase 2-D FIR digital filters is concentrated on the class of quadrantally symmetric filters, such as circular filters, fan-type filters etc [1]. A 2-D sequence, which is symmetric in both directions, is required to realize such quadrantally symmetric filters.

In this paper, we will start from the discussion of the symmetric properties of 2-D sequences to disclose their applications for designing quadrantally symmetric/antisymmetric linear-phase 2 -

D FIR digital filters by the eigenfilter approach, which has been used successfully to design linearphase 1-D filters [2][3] and 2-D quadrantally symmetric filters [4]. It is shown that there are sixteen types cases to be considered according to the symmetry/antisymmetry of 2-D sequences in both directions and their filter lengths (even or odd). The corresponding types of amplitude responses are tabulated into a complete table if these 2-D sequences are used to realize 2-D FIR filters. Also, the definitions of quadrantal-plane, half-plane and full-plane filters are described.

II. Symmetric Properties of 2-D Sequences

Let X be an $N_{1} \times N_{2} 2$-D sequence which is represented in a matrx form with its elements being denoted by $x\left(n_{1}, n_{2}\right), n_{1}=0,1, \cdots, N_{1}-1$,

$$
n_{2}=0,1, \cdots, N_{2}-1, \text { i.e. }
$$

$$
\mathbf{X}=\left[\begin{array}{llll}
x(0,0) & x(0,1) & \cdots & x\left(0, N_{2}-1\right) \tag{1}\\
x(1,0) & x(1,1) & \cdots & x\left(1, N_{2}-1\right) \\
\vdots & \vdots & \ddots & \vdots \\
x\left(N_{1}-1,0\right) & x\left(N_{1}-1,1\right) & \cdots & x\left(N_{1}-1, N_{2}-1\right)
\end{array}\right]
$$

If

$$
\begin{array}{ll}
x\left(n_{1}, n_{2}\right)=x\left(N_{1}-1-n_{1}, n_{2}\right) & 0 \leq n_{1} \leq N_{1}-1 \\
& 0 \leq n_{2} \leq N_{2}-1 \tag{2}
\end{array}
$$

we call \mathbf{X} an even-symmetric 2 - D sequence in $n_{1-}{ }^{-}$ direction; and if

$$
\begin{array}{ll}
x\left(n_{1}, n_{2}\right)=-x\left(N_{1}-1-n_{1}, n_{2}\right) & 0 \leq n_{1} \leq N_{1}-1 \\
& 0 \leq n_{2} \leq N_{2}-1 \tag{3}
\end{array}
$$

the sequence is called an odd-symmetric 2 -D sequence in n_{1}-direction. Similarly, the same case exists for n_{2}-direction. Then quadrantally symmetric or antisymmetric 2-D sequences can be divided into four major types:

Type I: even symmetry in both $n_{1^{-}}$and $n_{2^{-}}$ directions, i.e.

$$
\begin{array}{r}
x\left(n_{1}, n_{2}\right)=x\left(N_{1}-1-n_{1}, n_{2}\right)=x\left(n_{1}, N_{2}-1-n_{2}\right) \\
0 \leq n_{1} \leq N_{1}-1,0 \leq n_{2} \leq N_{2}-1 . \tag{4}
\end{array}
$$

Such an evev-even sequence is denoted by $\mathbf{X}_{e e}$.
Type II: even symmetry in n_{1}-direction and odd symmetry in n_{2}-direction, i.e.

$$
\begin{array}{r}
x\left(n_{1}, n_{2}\right)=x\left(N_{1}-1-n_{1}, n_{2}\right)=-x\left(n_{1}, N_{2}-1-n_{2}\right) \\
0 \leq n_{1} \leq N_{1}-1,0 \leq n_{2} \leq N_{2}-1 .
\end{array}
$$

(5)

We denote such an even-odd sequence by $\mathbf{X}_{e o}$.
Type III: odd symmetry in n_{1}-direction and even symmetry in n_{2}-direction, i.e.

$$
\begin{array}{r}
x\left(n_{1}, n_{2}\right)=-x\left(N_{1}-1-n_{1}, n_{2}\right)=x\left(n_{1}, N_{2}-1-n_{2}\right) \\
0 \leq n_{1} \leq N_{1}-1,0 \leq n_{2} \leq N_{2}-1 . \tag{6}
\end{array}
$$

We denote such an odd-even sequence by $\mathbf{X}_{o e}$.
Type IV: odd symmetry in both $n_{1^{-}}$and $n_{2^{-}}$ directions, i.e.

$$
\begin{array}{r}
x\left(n_{1}, n_{2}\right)=-x\left(N_{1}-1-n_{1}, n_{2}\right)=-x\left(n_{1}, N_{2}-1-n_{2}\right) \\
0 \leq n_{1} \leq N_{1}-1,0 \leq n_{2} \leq N_{2}-1 . \tag{7}
\end{array}
$$

We denote such an odd-odd sequence by $\mathbf{X}_{o o}$.
For any real $N_{1} \times N_{2} 2$-D sequence \mathbf{X}, it always can be decomposed into the above four type 2-D sequences, i.e.

$$
\begin{equation*}
\mathbf{X}=\mathbf{X}_{e e}+\mathbf{X}_{e o}+\mathbf{X}_{o e}+\mathbf{X}_{o o} \tag{8}
\end{equation*}
$$

and $\mathbf{X}_{e e}, \mathbf{X}_{e o}, \mathbf{X}_{o e}$ and $\mathbf{X}_{o o}$ can be calculated from X by

$$
\begin{align*}
& x_{e e}\left(n_{1}, n_{2}\right) \\
& =\frac{1}{4}\left[x\left(n_{1}, n_{2}\right)+x\left(N_{1}-1-n_{1}, n_{2}\right)\right. \tag{9}\\
& \left.+x\left(n_{1}, N_{2}-1-n_{2}\right)+x\left(N_{1}-1-n_{1}, N_{2}-1-n_{2}\right)\right], \\
& x_{e o}\left(n_{1}, n_{2}\right) \\
& =\frac{1}{4}\left[x\left(n_{1}, n_{2}\right)+x\left(N_{\| 1}-1-n_{1}, n_{2}\right)\right. \tag{10}\\
& \left.-x\left(n_{1}, N_{2}-1-n_{2}\right)-x\left(N_{1}-1-n_{1}, N_{2}-1-n_{2}\right)\right], \\
& x_{o e}\left(n_{1}, n_{2}\right) \\
& =\frac{1}{4}\left[x\left(n_{1}, n_{2}\right)-x\left(N_{1}-1-n_{1}, n_{2}\right)\right. \tag{1i1}\\
& \left.+x\left(n_{1}, N_{2}-1-n_{2}\right)-x\left(N_{1}-1-n_{1}, N_{2}-1-n_{2}\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
& x_{\circ \circ}\left(n_{1}, n_{2}\right) \\
& =\frac{1}{4}\left[x\left(n_{1}, n_{2}\right)-x\left(N_{1}-1-n_{1}, n_{2}\right)\right. \tag{12}\\
& \left.-x\left(n_{1}, N_{2}-1-n_{2}\right)+x\left(N_{1}-1-n_{1}, N_{2}-1-n_{2}\right)\right]
\end{align*}
$$

where $x_{e e}\left(n_{1}, n_{2}\right), \quad x_{e o}\left(n_{1}, n_{2}\right), \quad x_{o e}\left(n_{1}, n_{2}\right)$ and $x_{o o}\left(n_{1}, n_{2}\right)$ are the elements of $\mathbf{X}_{e e}, \mathbf{X}_{e o}, \mathbf{X}_{o e}$ and $\mathbf{X}_{\text {oo }}$ respectively.
III. Sixteen Types of Quadrantally Symmetric Linearphase FIR 2-D Filters

The frequency response of a 2-D FIR digital filter with its impulse response $h\left(n_{1}, n_{2}\right), n_{1}=$ $0,1, \cdots, N_{1}-1, n_{2}=0,1, \cdots, N_{2}-1$ can be characterized as

$$
\begin{equation*}
H\left(\omega_{1}, \omega_{2}\right)=\sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} h\left(n_{1}, n_{2}\right) e^{-j n_{1} \omega_{1}} e^{-j n_{2} \omega_{2}} \tag{13}
\end{equation*}
$$

If $h\left(n_{1}, n_{2}\right)$ is one of four types 2 - D sequences, Eq.(13) can be rewritten as

$$
\begin{equation*}
H\left(\omega_{1}, \omega_{2}\right)=e^{-j \frac{N_{1}-1}{2} \omega_{1}} e^{-j \frac{N_{2}-1}{2} \omega_{2}} e^{j \frac{M \pi}{2}} \hat{H}\left(\omega_{1}, \omega_{2}\right) \tag{14}
\end{equation*}
$$

where

$$
M= \begin{cases}0 & \text { Type I } \tag{15}\\ 1 & \text { Type II and Type III } \\ 2 & \text { Type IV }\end{cases}
$$

and $\hat{H}\left(\omega_{1}, \omega_{2}\right)$ is a real-valued function. Notice that by excluding the linear-phase part in (14), the frequency responses are real-valued functions for Type I and Type IV sequences, and are imaginary-valued functions for Type II and Type III sequences. For example, if $h\left(n_{1}, n_{2}\right)$ is a Type I 2-D sequence and N_{1}, N_{2} are odd integers, then

$$
\begin{equation*}
\hat{H}\left(\omega_{1}, \omega_{2}\right)=\sum_{n_{1}=0}^{\frac{N_{1}-1}{2}} \sum_{n_{2}=0}^{\frac{N_{2}-1}{2}} a\left(n_{1}, n_{2}\right) \cos \left(n_{1} \omega_{1}\right) \cos \left(n_{2} \omega_{2}\right) \tag{16}
\end{equation*}
$$

which is a real-valued function and $a\left(n_{1}, n_{2}\right)$ are related to $h\left(n_{1}, n_{2}\right)$ by

$$
\left\{\begin{align*}
a(0,0)= & h\left(\frac{N_{1}-1}{2}, \frac{N_{2}-1}{2}\right) \tag{17}\\
a\left(0, n_{2}\right)= & 2 h\left(\frac{N_{1}-1}{2}, \frac{N_{2}-1}{2}-n_{2}\right) \\
& n_{2}=1, \cdots, \frac{N_{2}-1}{2} \\
a\left(n_{1}, 0\right)= & 2 h\left(\frac{N_{1}-1}{2}-n_{1}, \frac{N_{2}-1}{2}\right) \\
& n_{1}=1, \cdots, \frac{N_{1}-1}{2} \\
a\left(n_{1}, n_{2}\right)= & 4 h\left(\frac{N_{1}-1}{2}-n_{1}, \frac{N_{2}-1}{2}-n_{2}\right) \\
& n_{1}=1, \cdots, \frac{N_{1}-1}{2} \\
& n_{2}=1, \cdots, \frac{N_{2}-1}{2}
\end{align*}\right.
$$

Therefore, according to the four types of 2-D sequences discussed above and their even/odd lengths ($N_{1} \times N_{2}$), there are sixteen different kinds of $\hat{H}\left(\omega_{1}^{\circ}, \omega_{2}\right)$ which are tabulated in Table I. The relationships between the coefficients $a\left(n_{1}, n_{2}\right) \mathrm{s}$ in $\hat{H}\left(\omega_{1}, \omega_{2}\right)$ and $h\left(n_{1}, n_{2}\right)$ can be derived easily.

As in the spatial-domain case, any magnitude response $\hat{H}\left(\omega_{1}, \omega_{2}\right)$ can be similiarly descomposed into four parts in frequency domain as below:

$$
\begin{align*}
\hat{H}\left(\omega_{1}, \omega_{2}\right)= & \hat{H}_{e e}\left(\omega_{1}, \omega_{2}\right)+\hat{H}_{e o}\left(\omega_{1}, \omega_{2}\right) \\
& +\hat{H}_{o e}\left(\omega_{1}, \omega_{2}\right)+\hat{H}_{o o}\left(\omega_{1}, \omega_{2}\right) \tag{18}
\end{align*}
$$

where

$$
\begin{array}{r}
\hat{H}_{e e}\left(\omega_{1}, \omega_{2}\right)=\hat{H}_{e e}\left(-\omega_{1}, \omega_{2}\right)=\hat{H}_{e e}\left(\omega_{1},-\omega_{2}\right) \\
=\hat{H}_{e e}\left(-\omega_{1},-\omega_{2}\right)
\end{array}
$$

$$
\begin{align*}
\hat{H}_{e o}\left(\omega_{1}, \omega_{2}\right)=\hat{H}_{e o}\left(-\omega_{1}, \omega_{2}\right) & =-\hat{H}_{e o}\left(\omega_{1},-\omega_{2}\right) \tag{19}\\
& =-\hat{H}_{e o}\left(-\omega_{1},-\omega_{2}\right)
\end{align*}
$$

$$
\begin{array}{r}
\hat{H}_{o e}\left(\omega_{1}, \omega_{2}\right)=-\hat{H}_{o e}\left(-\omega_{1}, \omega_{2}\right)=\hat{H}_{o e}\left(\omega_{1},-\omega_{2}\right) \\
=-\hat{H}_{o e}\left(-\omega_{1},-\omega_{2}\right) \tag{21}
\end{array}
$$

and

$$
\begin{align*}
\hat{H}_{o o}\left(\omega_{1}, \omega_{2}\right)=-\hat{H}_{o o}\left(-\omega_{1}, \omega_{2}\right) & =-\hat{H}_{o o}\left(\omega_{1},-\omega_{2}\right) \\
& =\hat{H}_{o o}\left(-\omega_{1},-\omega_{2}\right) \tag{22}
\end{align*}
$$

It is noted that $\hat{H}_{e e}\left(\omega_{1}, \omega_{2}\right)$, $\hat{H}_{e o}\left(\omega_{1}, \omega_{2}\right), \hat{H}_{o e}\left(\omega_{1}, \omega_{2}\right)$ and $\hat{H}_{o o}\left(\omega_{1}, \omega_{2}\right)$ can be realized by Type I, II, III and IV 2-D sequences, respectively. Hence given a desired magnitude response, we can realize it by either a single type 2-D sequence or several mixed type 2-D sequences. In this paper, the linear-phase 2-D FIR filters are divided into three classes as below:

- Quadrantal-plane filter: the filters which can be realized by only a single type 2-D sequence.
- Half-plane filter: the filters which can be realized by synthesizing two types $2-\mathrm{D}$ sequences.
- Full-plane filter: The filters which can be realized by synthesizing three or four types 2 D sequences.

For example, a full-plane filter with the desired response and its ingredients as shown in Fig.1(a). $D_{e e}$ and $D_{o o}$ can be synthesized by using Type I and Type IV 2-D sequences respectively, and $D_{e o}$ and $D_{o e}$ can be approached by using Type II and Type III 2-D sequences. Fig.1(b) shows the
resultant amplitude response with filter length $27 \times$ 27 , which is designed by the eigenfilter approach [4].

IV. Conclusions

In this paper, we have used the symmetric/antisymmetric $2-\mathrm{D}$ sequences to design quadrantally symmetric linear-phase 2-D FIR filters. It is shown that there are sixteen type cases to be considered according to the symmetry/antisymmetry of 2-D sequences in both directions and their filter lengths (even or odd). The definitions of quadrantal-plane, half-plane and full-plane filters are also defined.

References

[1] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processung, Englewood Cliffs, NJ: Prentice-Hall, 1975.
[2] S. C. Pei and J. J. Shyu, "Eigenfilter design of higher order digital differentiators," IEEE Trans. Acoust., Speech, Signal Proc., Vol. 37, pp.505-511, April 1989.
[3] P. P. Vaidyanathan and T. Q. Nguyen, "Eigenfilter: a new approach to least-squares FIR filter design and applications including Nyquist filters," IEEE Trans. Circuits Syst., Vol. 34, pp.11-23, Jan. 1987.
[4] S. C. Pei and J. J. Shyu, "2-D FIR eigenfilters: a least squares approach," IEEE Trans. Circuits Syst., Vol. 37, pp.24-34, Jan. 1990.
[5] P. K. Rajan and H. C. Reddy, "Application of symmetrical decomposition to 2-D FIR filter design," Proceeding of the 1985 IEEE ICASSP, pp.1321-1324.

(a)

(b)

Figure 1: Design of a full-band 2-D filter. (a) Desired amplitude response and its ingredients, (b) the resultant amplitude response.

Table I: $\hat{H}\left(\omega_{1}, \omega_{2}\right)$ of 2-D Sequences with Length $N_{1} \times N_{2} . \quad\left(L_{i}=\frac{N_{i}-1}{2}\right.$ for odd N_{i} and $L_{i}=\frac{N_{i}}{2}$ for even $N_{i}, i=1,2$.)

Type	Sub-type	N_{1}, N_{2}	$\hat{H}\left(\omega_{1}, \omega_{2}\right)$
I	1	N_{1} :odd, N_{2} :odd	$\sum_{n_{1}=0}^{L_{1}} \sum_{n_{2}=0}^{L_{2}} a\left(n_{1}, n_{2}\right) \cos \left(n_{1} \omega_{1}\right) \cos \left(n_{2} \omega_{2}\right)$
	2	N_{1} :odd, N_{2} :even	$\sum_{n_{1}=0}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \cos \left(n_{1} \omega_{1}\right) \cos \left(\left(n_{2}-\frac{1}{2}\right) \omega_{2}\right)$
	3	N_{1} :even, N_{2} :odd	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=0}^{L_{2}} a\left(n_{1}, n_{2}\right) \cos \left(\left(n_{1}-\frac{1}{2}\right) \omega_{1}\right) \cos \left(n_{2} \omega_{2}\right)$
	4	N_{1} :even, N_{2} :even	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \cos \left(\left(n_{1}-\frac{1}{2}\right) \omega_{1}\right) \cos \left(\left(n_{2}-\frac{1}{2}\right) \omega_{2}\right)$
II	1	N_{1} :odd, N_{2} :odd	$\sum_{n_{1}=0}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \cos \left(n_{1} \omega_{1}\right) \sin \left(n_{2} \omega_{2}\right)$
	2	N_{1} :odd, N_{2} :even	$\sum_{n_{1}=0}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \cos \left(n_{1} \omega_{1}\right) \sin \left(\left(n_{2}-\frac{1}{2}\right) \omega_{2}\right)$
	3	N_{1} :even, N_{2} :odd	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \cos \left(\left(n_{1}-\frac{1}{2}\right) \omega_{1}\right) \sin \left(n_{2} \omega_{2}\right)$
	4	N_{1} :even, N_{2} :even	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \cos \left(\left(n_{1}-\frac{1}{2}\right) \omega_{1}\right) \sin \left(\left(n_{2}-\frac{1}{2}\right) \omega_{2}\right)$
III	1	N_{1} :odd, N_{2} :odd	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=0}^{L_{2}} a\left(n_{1}, n_{2}\right) \sin \left(n_{1} \omega_{1}\right) \cos \left(n_{2} \omega_{2}\right)$
	2	N_{1} :odd, N_{2} :even	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \sin \left(n_{1} \omega_{1}\right) \cos \left(\left(n_{2}-\frac{1}{2}\right) \omega_{2}\right)$
	3	N_{1} :even, N_{2} :odd	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=0}^{L_{2}} a\left(n_{1}, n_{2}\right) \sin \left(\left(n_{1}-\frac{1}{2}\right) \omega_{1}\right) \cos \left(n_{2} \omega_{2}\right)$
	4	N_{1} :even, N_{2} :even	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \sin \left(\left(n_{1}-\frac{1}{2}\right) \omega_{1}\right) \cos \left(\left(n_{2}-\frac{1}{2}\right) \omega_{2}\right)$
IV	1	N_{1} :odd, N_{2} :odd	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \sin \left(n_{1} \omega_{1}\right) \sin \left(n_{2} \omega_{2}\right)$
	2	N_{1} :odd, N_{2} :even	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \sin \left(n_{1} \omega_{1}\right) \sin \left(\left(n_{2}-\frac{1}{2}\right) \omega_{2}\right)$
	3	N_{1} :even, N_{2} :odd	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \sin \left(\left(n_{1}-\frac{1}{2}\right) \omega_{1}\right) \sin \left(n_{2} \omega_{2}\right)$
	4	N_{1} : even, N_{2} : even	$\sum_{n_{1}=1}^{L_{1}} \sum_{n_{2}=1}^{L_{2}} a\left(n_{1}, n_{2}\right) \sin \left(\left(n_{1}-\frac{1}{2}\right) \omega_{1}\right) \sin \left(\left(n_{2}-\frac{1}{2}\right) \omega_{2}\right)$

