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中文摘要： 
 
關鍵詞：分類，機器學習，雜訊，模糊成員函數 

 
學習演算法(Learning Algorithms)是智慧型代理人(Intelligent Agent)中最基本

的組成部分，藉由不同的學習演算法，可使智慧型代理人表現出不同的效能和行

為。在眾多學習演算法中，分類演算法可使智慧型代理人從已知資料中學習分類

的方法，進而從未來的資料中做出正確的預測或表現合適的行為。模糊向量支持

機器(Fuzzy support vector machines, FSVMs)將每一個資料點聯結一個可表示資

料意義的模糊成員函數，降低雜訊在學習過程的影響。在這篇報告中，我們提出

及比較兩種自動設定資料點模糊成員函數的方法，使得我們能更方便地處理有雜

訊的分類問題及應用模糊向量支持機器於智慧型代理人中。使用指標性的資料庫

與其他演算法做比較，實驗結果證明我們的演算法可以有效的處理這個問題。 

 

英文摘要： 
 

Keywords: classification, machine learning, noise, fuzzy membership, 

 
Learning algorithms are the basic part of intelligent agent. Different learning 

algorithms can affect the performance and behavior of the intelligent agent. 
Classification algorithms used in many intelligent agent applications are one of these 
learning algorithms. Intelligent agents can learn the behavior from known data and 
predict or behave from future data by classification algorithms. Fuzzy support vector 
machines (FSVMs) provide a way to classify data with noises or outliers. Each data 
point is associated with a fuzzy membership that can reflect their relative degrees as 
meaningful data. In this report, we investigate and compare two strategies of 
automatically setting the fuzzy memberships of data points. It makes the usage of 



FSVMs easier in the application of reducing the effects of noises or outliers such that 
makes better behavior of intelligent agents. The experiments show that the 
generalization error of FSVMs is comparable to other methods on benchmark 
datasets. 

 

報告內容： 
 

1. Introduction 

 
The theory of support vector machines (SVMs), that is based on the idea of 

structural risk minimization (SRM), is a new classification technique and has drawn 
much attention on this topic in recent years [3, 4, 9, 10]. The good generalization 
ability of SVMs is achieved by finding a large margin between two classes [1, 8]. In 
many applications, the theory of SVMs has been shown to provide higher 
performance than traditional learning machines [3] and has been introduced as 
powerful tools for solving classification problems. 

Since the optimal hyperplane obtained by the SVM depends on only a small part of 
the data points, it may become sensitive to noises or outliers in the training set [2, 13]. 
To solve this problem, one approach is to do some preprocessing on training data to 
remove noises or outliers, and then use the remaining set to learn the decision 
function. This method is hard to implement if we do not have enough knowledge 
about noises or outliers. In many real world applications, we are given a set of 
training data without knowledge about noises or outliers. There are some risks to 
remove the meaningful data points as noises or outliers. 

There are many discussions in this topic and some of them show good performance. 
The theory of Leave-One-Out SVMs [11] (LOO-SVMs) is a modified version of 
SVMs. This approach differs from classical SVMs in that it is based on the 
maximization of the margin, but minimizes the expression given by the bound in an 
attempt to minimize the leave-one-out error. No free parameter makes this algorithm 
easy to use, but it lacks the flexibility of tuning the relative degree of outliers as 
meaningful data points. Its generalization, the theory of Adaptive Margin SVMs 

(AM-SVMs) [12], uses a parameter  to adjust the margin for a given learning 
problem. It improves the flexibility of LOO-SVMs and shows better performance. 
The experiments in both of them show the robustness against outliers. 

FSVMs solve this kind of problems by introducing the fuzzy memberships of data 
points. The main advantage of FSVMs is that we can associate a fuzzy membership to 
each data point such that different data points can have different effects in the learning 



of the separating hyperplane. We can treat the noises or outliers as less importance 
and let these points have lower fuzzy membership. It is also based on the 
maximization of the margin like the classical SVMs, but uses fuzzy memberships to 
prevent some points from making narrower margin. This equips FSVMs with the 
ability to train data with noises or outliers by setting lower fuzzy memberships to the 
data points that are considered as noises or outliers with higher probability.  

The previous work of FSVMs [6] did not address the issue of automatically setting 
the fuzzy membership from the data set. We need to assume a noise model of the 
training data points, and then try and tune the fuzzy membership of each data point in 
the training. Without any knowledge of the distribution of data points, it is hard to 
associate the fuzzy membership to the data point. 

In this report, we propose two strategies to estimate the probability that the data 
point is considered as noisy information and use this probability to tune the fuzzy 
membership in FSVMs. This simplifies the use of FSVMs in the training of data 
points with noises or outliers. The experiments show that the generalization error of 
FSVMs is comparable to other methods on benchmark datasets. 

 

2. Fuzzy Support Vector Machines 

 
Suppose we are given a set S of labeled training points with associated fuzzy 

memberships ),,(,),,,( 111 lll sxysxy  . Each training point N
i Rx   is given a label 

}1,1{iy  and a fuzzy membership 1 is  with i=1,...,l, and sufficient small 
0 , since the data point with 0is  means nothing and can be just removed from 

training set without affecting the result of optimization. Let )(xz   denote the 

corresponding feature space vector with a mapping   from NR  to a feature space 

Z. 
  Since the fuzzy membership is  is the attitude of the corresponding point ix  
toward one class and the parameter i  can be viewed as a measure of error in the 
SVM, the term iis   is then a measure of error with different weighting. The optimal 

hyperplane problem is then regarded as the solution to minimize 
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where C is a constant. It is noted that a 

smaller is  reduces the effect of the parameter i  such that the corresponding point 

ix  is treated as less important. 

  The only free parameter C in SVMs controls the trade-off between the 



maximization of margin and the amount of misclassifications. A larger C makes the 
training of SVMs less misclassifications and narrower margin. The decrease of C 
makes SVMs ignore more training points and get a wider margin. 
  In FSVMs, we can set C to be a sufficient large value. It is the same as SVMs that 
the system will get narrower margin and allow less miscalssifications if we set all 

1is . With different value of is , we can control the trade-off of the respective 
training point ix  in the system. A smaller value of is  makes the corresponding 
point ix  less important in the training. 

  There is only one free parameter in SVMs while the number of free parameters in 
FSVMs is equivalent to the number of training points.  

 

3. Training Procedures 

 
There are many methods to training data using FSVMs, depending on how much 
information contains in the data set. If the data points are already associated with the 
fuzzy memberships, we can just use this information in training FSVMs. If it is given 
a noise distribution model of the data set, we can set the fuzzy membership as the 
probability of the data point that is not a noise, or as a function of it. Let ip  be the 
probability of the data point ix  that is not a noise. If there exists this kind of 
information in the training data, we can just assign the value ii ps   or )( ii pfs   

as the fuzzy membership of each data point. Since almost all applications lack this 
information, we need some other methods to predict this probability. In order to 
reduce the effects of noisy data when using FSVMs in this kind of problem, we 
propose the following training procedure. 
1. Use the original algorithm of SVMs to get the optimal kernel parameters and the 

regularization parameter C. 
2. Use some strategies to set the fuzzy memberships of data points and find the 

modified hyperplane by FSVMs in the same kernel space. 
As for steps, we propose two strategies: one is based on kernel-target alignment and 

the other is using k-NN. 
 
3.1 Strategy of Using Kernel-Target Alignment 
 
The idea of kernel-target alignment is introduced in [5]. Let 
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. This definition provides a method for selecting kernel 

parameters and the experimental results show that adapting the kernel to improve 
alignment on the training data enhances the alignment on the test data, thus improved 
classification accuracy. 
 In order to discover some relation between the fuzzy membership and the data 

point, we simply focus on the value ),( iiK yxf . Suppose )( , ji xxK  is a kind of 

distance measure between data points ix  and jx  in feature space Z. For example, 

by using the RBF kernel 
2

),( ji xx
ji exxK   , the data points live on the surface of a 

hypersphere in feature space Z as shown in Figure 1. Then )()(),( jiji xxxxK    

is the cosine of the angle between )( ix  and )( jx . For the outlier )( 1x  and the 

representative )( 2x , we can easily check the value ),( 11 yxfK  is lower than 
),( 22 yxfK . 

  We observe this situation and assume that the data point ix  with lower value of 
),( iiK yxf  can be considered as outlier and should make less contribution of the 



classification accuracy. For this assumption, we can build a relationship between the 
fuzzy membership is  and the value of ),( iiK yxf  that is defined as 
































otherwise
ff

fyxf

fyxf
fyxf

s
d

LB
K

UB
K

LB
KiiK

LB
KiiK

UB
KiiK

i

,
),(

)1(

),(,
),(,1



 , where UB
Kf  and LB

Kf  are the 

parameters that control the mapping region between is  and ),( iiK yxf , and d is the 

parameter that controls the degree of mapping function. 
The training points are divided into three regions by the parameters UB

Kf  and 

LB
Kf . The data points in the region with ),( iiK yxf  > UB

Kf  can be viewed as valid 

examples and the fuzzy membership is equal to 1. The data points in the region with 

),( iiK yxf  < LB
Kf  can be highly thought as noisy data and the fuzzy membership is 

assigned to  . The data points in rest region are considered as noise with different 
probabilities and can make different distributions in the training process. 
 
3.2 Strategy of Using k-NN 
 

For each data point ix , we can find a set k
iS  that consists of k nearest neighbors of 

ix . Let in be the number of data points in the set k
iS  that the class label is the 

same as the class label of data point ix . It is reasonable to assume that the data point 
with lower value of in  is more probable as noisy data. But for the data points that are 
near the margin of two classes, the value in  of these points may be lower. It will get 

poor performance if we set these data points with lower fuzzy memberships. In order 

to avoid this situation, we introduce a parameter UBk  that controls the threshold of 
which data point needs to reduce its fuzzy membership. 
For this assumption, we can build a relationship between the fuzzy membership is  

and the value of in  that is defined as 
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, where d is 

the parameter that controls the degree of mapping function. 

 

4. Experiments 



 
We conducted computer simulations of SVMs and FSVMs using the data sets as in [7]. 

In these simulations, we use the RBF kernel as 
2

),( ji xx
ji exxK   . For each data set, 

we train and test the first 5 sample sets to find the best parameters and use these 
parameters to get the result of the whole sample sets. Since there are more parameters 
than the original algorithm of SVMs, we use two procedures to find the parameters as 
described in the previous section. In the first procedure, we search the kernel 
parameters and C using the original algorithm of SVMs. In the second procedure, we 
fix the kernel parameters and C that are found in the first stage, and search the 
parameters of the fuzzy membership mapping function. 

To find the parameters of strategy using kernel-target alignment, we first fix 

),(max iiKi
UB
K yxff   and ),(min iiKi

LB
K yxff  , and perform a two-dimensional 

search of parameters   and d. The value of   is chosen from 0.1 to 0.9 step by 0.1. 
For some case, we also compare the result of  =0.01. The value of d is chosen from 

82  to 82  multiply by 2. Then, we fix   and d, and perform a two-dimensional 
search of parameters UB

Kf  and LB
Kf . The value of UB

Kf  is chosen such that 0%, 
10%, 20%, 30%, 40%, and 50% of data points have the value of fuzzy membership as 
1. The value of LB

Kf  is chosen such that 0%, 10%, 20%, 30%, 40%, and 50% of data 
points have the value of fuzzy membership as  . 



To find the parameters of strategy using k-NN, we just perform a two-dimensional 

search of parameters   and k. We fix the value UBk  = 0.5k and d=1 since we don't 
find much improvement when we choose other values of these two parameters such 
that we skip searching for saving time. The value of   is chosen from 0.1 to 0.9 
stepped by 0.1. For some case, we also compare the result of  =0.01. The value of k 

is chosen from 2 to 82  multiplied by 2. Table 1 lists the parameters after our 
optimization in the simulations. For some data sets, we cannot find any parameters 
that can improve the performance of SVMs such that we left blank in this table. 

Table 2 shows the results of our simulations. For comparison with SVMs, FSVMs 
with kernel-target alignment perform better in 9 data sets, and FSVMs with k-NN 
perform better in 5 data sets. By checking the average training error of SVMs in each 
data set, we find that FSVMs perform well in the data set when the average training 
error is high. These results show that our algorithm can improve the performance of 
SVMs when the data set contains noisy data. 

We also list in Table 3 the other results for single RBF classifier (RBF), AdaBoost 
(AB), and regularized AdaBoost (ABR), that are obtained from [7], and the results for 
LOO-SVM, that are obtained from [12]. We can easily check that FSVMs perform 
better in the data set with 
noises.



 

 

5. Conclusions 

 



In this paper, we propose training procedures for FSVMs, and describe two strategies 
for setting fuzzy membership in FSVMs. It makes FSVMs more feasible in the 
application of reducing the effects of noises or outliers. The experiments show that the 
performance is better in 
the applications with the noisy data. 

We also compare the two strategies for setting the fuzzy membership in FSVMs. 
The usage of FSVMs with kernel-target alignment is more complicated since there 
exist many parameters. It costs much time to find the optimal parameters in the 
training process but the performance is better. The usage of FSVMs using k-NN is 
much simple to use and the results are close to the previous strategy. 
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計劃成果自評： 
本計畫定期舉辦研討會，並投稿國內外學術會議，以及 IEEE Trans. Neural 
Networks 期刊，成效良好。 

 


