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一、中文摘要

本研究的主要目的在探討即時系統驗證之相關問題。我們探討具有未知變數

(unknown timing parameters)之時間自動機 (timed automata)的抵達解答空間

(reachability solution space)問題。一般而言，該問題為不可解的。我們定義三類

有限制之具參數時間自動機，並詳細分析其抵達解答空間問題。該三類分別為「上

限」(upper-bound)、「下限」(lower-bound)、「雙分」(bipartite) 時間自動機。我們

詳細分析以上問題的複雜度，並將結果應用至「具狀態之時間向量加法系統」

(timing parameter vector addition systems with states) 。

關鍵詞：時間自動機、時態邏輯、即時系統驗證。

Abstract

We investigate the problem of characterizing the solution spaces for timed automata 

augmented by unknown timing parameters (called timing parameter automata (TPA)).

The main contribution of this work is that we identify three non-trivial subclasses of 

TPAs, namely, upper-bound, lower-bound and bipartite TPAs, and analyze how hard 

it is to characterize the solution space. As it turns out, we are able to give complexity 

bounds for the sizes of the minimal (resp., maximal) elements which completely 

characterize the upward-closed (resp., downward-closed) solution spaces  of 

upper-bound (resp., lower-bound)  TPAs. For bipartite TPAs, it is shown that their 
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solution spaces are not semilinear in general. We also extend our  analysis to  TPAs 

equipped with counters without zero-test capabilities.

Key words: Timed automata, temporal logic, real-time verification.

二、計畫目標與規劃

Timed automata have been a popular model in the research of formal description and 
verification of real-time systems. In real-world applications,   systems are usually 
described with unknown parameters to be analyzed. Here we use the term  timing 
parameters to refer to  those parameters which are  compared with clocks in either 
timed automata or parametric TCTL formulae. A timed automaton extended with 
unknown timing parameters is called a timing parameter automaton (TPA). A
valuation of unknown parameters making the goal state reachable in a TPA is called a
solution. In this research, we are mainly concerned with the following problem:

l The reachability solution characterization (RSC)} problem: Given a real-time 
system A and a reachability predicate ç, formulate  a  representation for the 
solution space  of A with respect to ç.

It has been shown that the emptiness  problem are compared with unknown 
parameters in TPAs. Knowing such a limitation, a line of subsequent research has 
been focused on the solution characterization problem for a number of restricted 
versions of TPAs. The positive results obtained in the last few years have all been 
focused on unknown timing parameters in the specification of  logic formulae. But in 
practice, it is more likely that engineers will use unknown parameters in the system 
behaviour descriptions. Moreover, engineers will be more interested at knowing the 
condition for solution parameters valuations than at knowing whether there exists a 
solution parameter valuation. In this work, we identify three subclasses of TPAs and 
investigate the complexity issue of their timing parameter characterization problems.
The three subclasses are called upper-bound TPAs, lower-bound TPAs, and bipartite 
TPAs.

三、計畫分析與討論

Intuitively, what makes upper-bound (resp. lower-bound) TPAs easier to analyze, in 
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comparison with their general counterparts,  lies in the fact that for each of such 
TPAs, the solution space is upward-closed (resp.  downward-closed). It is well 
known that  an upward-closed set (resp., downward-closed set) is completely 
characterized by its    minimal (resp., maximal) elements, which always form a  
finite set  although the set might not be effectively  computable in general. We are 
able to give a complexity bound for the sizes of the    minimal elements for  a 
given upper-bound  TPA. Our analysis is carried out using a strategy in  which  a 
sufficient and necessary condition  was derived under which  the set of minimal 
elements of an upward-closed set is guaranteed to be  effectively computable. Taking 
advantage of certain  properties offered by timed automata, we are able to yield   
complexity bounds  for the sizes of the minimal elements for the  upward-closed 
sets associated with upper-bound TPAs, allowing us to characterize their solution 
spaces. This in turn answers the  RSC problem for upper-bound TPAs. We are also 
able to  extend our analysis to the model of upper-bound timing parameter vector 
addition systems with states (TPVASSs), each of which can be viewed as a  TPA 
equipped with  counters  without zero-test capabilities.

We feel that the method developed in this paper for analyzing upward-closed sets   

is interesting in its own right. Our technique  refines the strategy of Valk and Jantzen 

(which deals with  computing  the minimal elements of  upward-closed sets) in the 

following sense. Although the  approach proposed in Valk and Jantzen is powerful 

for showing decidability for a variety of  problems in a unified framework, the lack 

of information regarding the nature of the  underlying system  makes the 

calculation of the size of the associated  upward-closed infeasible. Our study shows 

that if a key step in the algorithm of Valk and Jantzen meets certain conditions, then 

the sizes of the  minimal elements can be deduced. It would be interesting to seek 

additional applications of our technique.

四、計畫成果自評
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Given a TPA, the set of all solutions forms the so-called solution space. With respect 
to a given pair of A and goal predicate ç, the problem of finding a proper 
characterization for  the solution space  of A with respect to ç  arises naturally in 
many real-world applications. Such a problem is called the Reachability Solution 
Characterization (RSC) problem. It is not surprising that, in general,  a simple 
characterization of solution spaces for   TPAs  is unlikely, since the emptiness 
problem (i.e., the problem of deciding whether thesolution space is empty) is 
undecidable. In the following, we define subclasses of TPAs whose solution spaces 
have simpler characterizations.

We have  studied in detail  the sizes of the minimal (maximal, resp.)  elements of 
upward-closed (downward-closed, resp.) solution spaces associated with upper-bound 
(lower-bound, resp.)  TPAs. Aside from the  results themselves, for upper-bound 
TPAs our analysis also  suggests a strategy which, in a sense, supplements the 
unified approach of  Valk and Jantzen for reasoning about upward-closed sets. We 
feel that our new approach for   upward-closed sets is interesting in its own right,  
and deserves further investigation. We were also able to  extend our analysis to 
upper-bound TPVASSs, i.e., TPAs equipped with counters without zero-test 
capabilities. Results concerning lower-bound and bipartite TPAs were also derived in 
this paper. A  line of  future research for upper-bound TPAs (and TPVASSs) is to 
explore the possibility of manipulating and characterizing the computations and the 
solution spaces in a symbolic fashion. One way to do this, perhaps, is to take a closer 
look at data structures designed explicitly  for upward-closed sets, such as the 
so-called sharing trees. Finding how tight our complexity  bounds for upper-bound 
and lower-bound TPAs are remains a question to be answered.
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