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Abstract: The paper presents a performance 
analysis of certain eigenstructure based methods 
(MUSIC type) with suitable forward-only and 
forward/backward smoothing schemes employed 
to decorrelated coherent sources. Bias and 
resolution thresholds are derived for two coherent 
sources with different phase and unequal power. 
The effect of phase difference and power ratio on 
the resolution threshold is discussed. For the case 
of forwardbackward smoothing and two coherent 
sources with same phase and equal power, the 
resolution threshold reduces to that obtained by 
Pillai et al. Detailed computer simulations which 
confirm the analysis are also presented. 

1 Introduction 

High-resolution eigenstructure based techniques [ 1-6 1 
can estimate the directions of arrival (DOAs) of incoher- 
ent and partially coherent sources. For coherent sources, 
these techniques may be modified by preprocessing 
smoothing techniques [7-91, which can decorrelate the 
coherence between sources. The eigenstructure-based 
techniques can resolve any two closely spaced sources 
when the ensemble covariance matrix is available. 
However, in reality, the covariance matrix is estimated 
from finite array sample data. The deviation between the 
estimated and the ensemble covariance matrices produces 
a biased estimation, and these techniques have different 
performances. 

Recently, Kaveh et al. [lo] derived the expressions of 
the bias and resolution threshold, the signal-to-noise 
ratio (SNR) at which two closely spaced sources can be 
resolved, of the MUSIC method for two uncorrelated 
sources. Later Pillai et al. [ l l ,  121 presented the bias and 
resolution threshold of the MUSIC method with a 
forward/backward smoothing scheme for two coherent 
sources of equal power and the same phase. Since two 
coherent sources usually have different phase and power, 
we derive in this paper the bias and resolution thresholds 
of the MUSIC method for such two coherent sources. 
Instead of solving for eigencomponents of the covariance 
matrix, the derivation involves the sum and product of 
the two largest eigenvalues. The bias and resolution 
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thresholds are obtained for both the forward/backward 
and forward-only smoothing schemes. 

2 Problem formulation and previous results 

Consider a uniform linear array illuminated by two 
coherent narrow-band sources with complex waveforms 
u(t) and IpJe'%(t) and DOAs 8 ,  and 8, with respect to 
the array broadside, where Ip I and 4 represent the rela- 
tive amplitude attenuation and phase delay of the second 
source with respect to the first source. Without loss of 
generality, let us assume that IpI < 1 .  To estimate the 
DOAs of the two coherent sources, the array is grouped 
into K subarrays, each with M sensors. With the assump- 
tion that the signals and noises are stationary, zero mean 
circular Gaussian independent random processes ~ and, 
further, the noises are IID (independent and identically 
distributed) with common variance a2, the ensemble 
forward smoothed covariance matrix of the K subarrays 
can be written as 

where 

In the above equations, E and H denote expectation and 
hermitian, respectively, and a(wi) is the normalised direc- 
tion vector associated with Bi , 

where 

2nd sin Bi w.  = ~ i = l , 2  

d = the space between sensors and I = the wavelength of 
the signal sources. 

It is known that in R ,  the two coherent sources are 
decorrelated when K 2 2. To reduce the number of extra 
sensors required for smoothing, the ensemble forward/ 
backward smoothed covariance matrix can be formed as 

R = + { R ,  + T R f Q  
= A R , , A ~  + a2i (7) 
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where Tis the reverse permutation matrix 
0 . . .  . . .  0 1 j o  . I '  0 1 0  ;] 

...  0 1  
1 0 . . .  . . .  

and 

K 
, ( D - ( K + M - L - I )  H + 1 D - ( K + M - k - l ) R *  1 ] (9) 

k = l  

with '*' representing conjugation. In R, the two coherent 
sources are decorrelated with K 2 1 except when the 
phase difference between the two coherent sources is 
either 0" or 180" at the array aperture centre in the case 
ofK = 1. 

The MUSIC method can estimate the DOAs of the 
two coherent sources using either the forward-only 
smoothed or the forward/backward smoothed covariance 
matrices. With the ensemble covariance matrices R,  and 
R described as above, the MUSIC method can resolve 
any two closely spaced coherent sources. Practically, the 
covariance matrix is estimated from array sample data. 
The difference between the estimated covariance matrix 
and the ensemble covariance matrix results in a biased 
estimation of DOAs. Recently, Pillai et al. [12] derived 
the general expressions for the mean and variance of the 
null spectrum of the MUSIC method. For two coherent 
sources, the mean and variance are given by 

ECQ(41 

L k # i  

k # i  l f i  1 

and 
Var 

+o (6) 

+ 0 ($) 
In eqns. 10 and 11, N denotes the number of snapshots, 
Ai and P i ,  i = 1, 2, . . . , M, are the eigenvalues in descend- 
ing order and associated eigenvectors, respectively, of the 
ensemble smoothed covariance matrix, Re( .) stands for 
the real part of (.), and Q(o) is the null spectrum com- 
puted from the ensemble smoothed covariance matrix, i.e. 

M 

Q(4 = 1 I B r 4 0 )  I' 
i = 3  

L 

= 1 - I/3"a(o) I Z  (12) 
i = l  
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Here, r i k l j  is given by 
f %  K K 

for forward/ 

for forward- 
only 
smoothing 

(13) 

In eqn. 13, p o  = K - p + 1, 4,, = K - q + 1 and y j  is the 
backward version of the vector By. Further, 

Riq = E[Xi(Xi)"] 

Rb,, = E[Xb,(X:)H] 

where X{ (or Xp) is the output vector of the ith forward 
(or backward) subarray. For the forward/backward 
smoothing with K = 1, eqn. 10 reduces to 

+ o(+) 
Since Var [Q(w,)] is much less than E [ Q ( o k ) ]  for k = 1,2  
[ 123, the resolution threshold for two closely spaced 
sources is defined as the smallest SNR for which the fol- 
lowing inequality is satisfied [lo] 

E[Q(o,,,)]~ E[Q(WJI i = 1 , 2  (16) 
where O, = (col + wJ2. From eqns. 15 and '6, Pillai et 
al. have derived the resolution threshold 5, for two 
coherent sources of equal power and same phase, to be 
c121 

where tT [lo] is the normalised SNR (resolution 
threshold) required to resolve two equipowered uncor- 
related sources separated by the normalised 'angle' A2 = 
(M20;)/3. 20, = (02 - ol)  represents the actual separa- 
tion. 

In reality, two coherent sources usually have different 
phase and power. We analyse in this paper the per- 
formance of the MUSIC method with forward/backward 
and forward-only smoothing schemes for such coherent 
sources. The number of subarrays K is chosen to be one 
for forward/backward smoothing and two for forward- 
only smoothing (i.e. the minimum required). 

3 Performance of MUSIC with forward/backward 
smoothing 

The expressions of the bias and resolution threshold for 
the MUSIC scheme with forward/backward smoothing 
and K = 1 for two coherent sources with different phase 
and power are derived below. EIQ(oi)] ,  i = 1, 2, is first 
evaluated by using eqn. 15 which is the general expres- 
sion for the MUSIC scheme with forward/backward 
smoothing and K = 1 in the case of two coherent 
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sources. Eqn. 15 involves the eigenvalues and eigen- 
vectors associated with the signal subspace of the 
smoothed ensemble covariance matrix I?. For the case 
considered here, the expressions of the eigenvalues and 
eigenvectors are too complex to be used for evaluating 
the bias. In the analysis shown below, that problem is 
circumvented by using the sum and product of the two 
largest eigenvalues. 

To evaluate EIQ(oi)], I#a(oi) 1, i, j = 1, 2, is first 
examined. Let pi be the eigenvalue of the noise free 
ensemble covariaqce matrix AI?,AH.  p i  is related to A i ,  
the eigenvalue of R ,  by 

(18) ,g. j. - 0 2  
I 'I 

Using eqns. 2,4 and 9, AI?, A H  can be written as 

AR" AH = MEClu(t) l21Ca(o1)a(w2)1 

and pj is defined as 

Pi 
(21) pj = 

M E  CI 44 1'1 

In eqn. 19, pt is the effective correlation coefficient of the 
two coherent sources for forward/backward smoothing 
and K = 1 

cos [ ( M  - l)Od - 41 P r  = , - j ( M - l ) o d  (20) 

Since Q(w,) is much less than unity for two closely 
spaced sources and pi is smaller than p i ,  Q(o,)p; 
and Q(O,)@'~)' in eqn. 33 can be approximated by 
Q(o,)(,u; + p i )  and Q(o,)(dl pi )2 ,  respectively. There- 

Substituting eqn. 27 into eqn. 15, the mean of the null 
spectrum in the directions of w1 and w2 can be obtained 
within the first-order approximation, as 

where C is defined as the array output SNR of the weaker 
source, 

(29) 
[ a  M E  CI u(t)I21 IP l 2  

o2 

Similarly, to find the bias in the direction of om, the 
factor 1 BFu(w,) 1' can be evaluated by premultiplying and 
postmultiplying eqn. 19 by #(a,) and a(o,), respectively, 
and this results in 

where pa is given by 

pa = 1 + lp12 + I p ~ p ~ e j ( ~ - ~ ) ~ d +  IplpFe-j(M-l)Wd (32) 
From eqns. 30 and 31, we may obtain the E[Q(w,)] with 
the first-order approximation 

Premultiplying and postmultiplying eqn. 19 by #(mi) and 
a(w,), respectively, for i = 1, 2, we get the following equa- 
tions 

1 + IP121Ps12 + I P l P t P s  + 1PIP:P: 

= Pi IB?a(o1)l2 + Pi IP;4Wl)l2 (22) 
and 

lP12 + lPs12 + IP IPrPs + IPlP:P,* 

= P i  188432) I 2  + Pi 18%(o2) l 2  (23) 

p, = aH(w2)a(wl) = "WdSi(M ? d  w ) (24) 

In eqns. 22 and 23, p, is defined as 

where 

sin ( xy )  
Si(x, y )  ~ 

x sin y 

Since p1 and P2 span the signal subspace, we have 

Ij?ya(wi)12 + Ifi?a(oi)12 = 1 for i = 1,2 (26) 
Solving eqns. 22, 23 and 26, we get 

for i, j = 1, 2 (27) 

Since p l  and p2 are eigenvalues of AI?, A H ,  the following 
equation holds 

,LL: - Tr (AI?, AH)p i  + I I?, A H A  I = 0 (34) 

where Tr ( .)  denotes the trace of ( .  ). From eqns. 21 and 
34, the sum and product of pi and ,U; are given by 

= lPI2(1 - IP,12)(1 - IPrI2) (36) 

One can see from eqn. 28 that E[Q(w2)] 3 EIQ(ol)] for 
I p l 2  d 1.  Therefore, the resolution threshold is deter- 
mined by the weaker source, 

which is the same as the conclusion drawn by Lee [13] 
for two uncorrelated sources. Substituting eqns. 28 and 
33 into eqn. 37 and using Q(wm) N &A4 [lo, 131, we may 
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get the resolution threshold, 

(40) 
For two closely spaced sources, it can be shown that the 
resolution threshold may be approximated as follows. 

(a) For I sin 4 I 4 A :  

where 

4 - ( M  - 1)Wd for 4 ( M  - 1)wd 
( M  - l )o ,  - 4 - n for 4 N ( M  - 1)wd - z 

o = {  
(47) 

It can be seen from eqn. 46 that the resolution threshold 
has a peak value when 8 approaches zero. This result 
comes from the fact that the MUSIC with forward/ 
backward smoothing and K = 1 can not decorrelate the 
two coherent sources with phase difference equal to 
( M  - l)w, or ( M  - l )od  - n. 

4 Forward-only smoothing 

For forward-only smoothing, we analyse the performance 
of the MUSIC with K = 2. In the case, riklj in eqn. 13 

2NA2 1 + lp12 + 21p I Sgn (cos 4) - 41p 1 Sgn (cos #)Az 
x ( l + J j l + -  

5 ( M - 2 ) 3 - l p ( 2  +21plSgn(cos+)+ {[31p12-661plSgn(cos4)-29]/20}A2 

where t", is the resolution threshold for two coherent 1 
sources-of equal power and same phase given in Refer- 
ence 12, and a, and a, are given by 

(42) 
3 - Ip12 + 2 I p 1 ~ g n  (cos 4) a, = 

12 

and 

1 1  - 51pI2 - 21pl Sgn (cos 4) 
48 a, = (43) 

with 

1 for a 3 0 
- 1  for a < O  

Sgn (a) = (44) 

It can be seen from eqn. 41 that for I p I = 1 and 4 = 0, [ 
reduces to t T .  

(b) For I sin 4 I % A, 

3 - lp12 + 2 l p l  cos 4 
4 sin2 4 

I) 2NA2 1 + lp12 + 21pl cos 4 
5 ( M - 2 ) 3 - ~ p 1 2 + 2 1 p I c o s ~  

NA4 i-- 

x ( 1  + / [ I +  ~ 

(45) 5 - 
4 sin2 4 

(C) For COSz($ - ( M  - 1 ) o d )  % 1 ,  

i- 

(46) + - 
4 
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~ reduces to 

for i, j ,  k,  1 < 2 

I + $ v ? R R ( 2 f i k f l ? R i 1  p j  otherwise 

where 
1 f o r i = j  

(49) 

In eqn. 48, r i k l j  is not only dependent on the covariance 
matrices of the two subarrays, R ( ,  and R i 2 ,  but also 
related to the cross correlation matrices R i 2  and R I , .  
Concerning RJ1 defind by eqn. 14, it can be written as 

R$, = ADR,AH + a2J, (50) 
where J ,  is 

0 1 0 . . '  

0 0 " '  

0 . . . . . . . . 

As to R { 2 ,  it is equal to Substituting eqn. 48 into 
eqn. 10 and using the following identity (shown in 
Appendix 9. l), 

it is proved in Appendix 9.2 that the expression for the 
mean of the null spectrum in the case of forward-only 
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smoothing and K = 2 is given by 

(54) 

Therefore, for large M, eqn. 53 may be approximated by 

+ (6) ( 5 5 )  

Note that eqn. 55 is the same as eqn. 15 which represents 
the forwardbackward smoothing case. Therefore, the 
expressions for the mean and resolution threshold 
derived from eqn. 55 have forms similar to eqns. 28, 33 
and 38, except that the effective correlation coefficient is 
different. For forward-only smoothing with K = 2, the 
effective correlation coefficient is 

cos (ad) (56) p{ = &'(md-+) 

Since I p{ I is independent of 4, the bias and resolution 
threshold of the forward-only smoothing are less sensitive 
to 4 than those of the forward/backward smoothing. 
Therefore, using A 6 1, the resolution threshold may be 
approximated by 

A-4(k0  + k , A  + k2A2)  
20(M - 2)  

NO: c -  
2 N A 2  

- M 2 ( k ,  + k l A  + k2A2)5", 
where 

3 - ipi2 + ~ I P I  COS 4 k ,  = 
4 

(57) 

(59)  
4 3  k ,  = - Jp I  sin 4 
2 

( P I 2  + 1 + 1OIpl cos 4 

3 - lP12 - IPI cos 4 

k2 = - 
16 

4M2 
+ 

1 + lP12 + 21Pl cos 4 
+ 2 4 ( 3 ) I p l  sin 4 A  - 41pl cos 4 A 2  C =  

3 - IpI2 + 21pl cos 4 + 2, / (3)Ipl  sin 4 A  
+ (C31pI2 - 6 6 1 ~ 1  COS 4 - 2 9 ] / 2 0 } A 2  

It can be seen from eqn. 57 that for I p I = 1 and 4 = 0, 
N M 2 f T ,  where 5 ,  is the resolution threshold for the 

forward/backward smoothing with K = 1 in similar 
source situations. 

5 Computer simulations 

Computer simulation results are presented in this section. 
We first simulated the bias and resolution threshold for 
the forwardbackward smoothing with K = 1. Fig. 1 pre- 
sents the bias computed from eqn. 28 and the bias aver- 
aged from 30 independent simulation trials with M = 10, 
IpI = 1, SNR = 30dB, N = 100, and 4 = -60", 0" and 
30". Fig. 2 shows the bias for 1p1 = 1 and ) p )  = 0.1 with 
M = 10, SNR of the second source =20 dB, dl  = 69" 
and d2 = 75". Results show that the computed and aver- 
aged biases match very well. The resolution threshold 
was simulated with parameters the same as those used in 
Fig. 1 except that M = 7. Table 1 shows the probability 
of resolution averaged from a hundred independent trials 
for different SNR and angular separation. The resolution 
threshold is chosen to be the SNR where the probability 
of resolution is 0.5. 

O r  

.h I \ ! '\ 
' - 3 6 1  \ , I  ' t 

- 6 0 - d  
000 008 016 024 032  040 

angular separation 

Fig. 1 Bias at one of the arrival anglesforforwardlbackward smooth- 
ing 
K = 1, ten sensors, Ipl = 1, SNR = 30dB and 100 snapshots; ~ computed 
bias for Q = 0"; - - - ~ computed bias for Q = 30"; '...... computed bias for 
Q = -60"; averaged bias for Q = 0"; + averaged bias for Q = 30"; 0 averaged 
bias for Q = -60" 

Fig. 3 plots the resolution threshold obtained from 
Table 1 and that computed from eqn. 38. Fig. 4 shows 
the resolution threshold simulated with the same param- 
eters as used in Fig. 2. Again, the theoretical results agree 
with the results obtained from Monte Carlo simulations. 
From Figs. 3 and 4, it may be observed that the 
resolution threshold has a peak value for 4 close to 
(M - 1)Od or (M - 1)wd - R. This result is consistant 
with the analysis in eqn. 46. The bias and resolution 
threshold for the forward-only smoothing with K = 2 is 
presented in Figs. 5-8. Here, M is chosen to be ten in 
simulating both the bias and resolution threshold. Figs. 5 
and 6 show the bias simulation results, and Figs. 7 and 8 
present the resolution thresholds. From Figs. 4 and 8, the 
results show that the resolution threshold of the forward/ 
backward smoothed case with K = 1 is lower than that 
of the forward-only smoothed case with K = 2 except 
when 4 is close to (M - 1)Od or ( M  - 1)Od - 71. 
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L 
\ / 

Y 4- - -+'I / \ I l c , , c t  
\ 

-651 
-180 -108 -36 36 108 180 

phase 
a 

-651 1 1 1 I I 
-180 -108 -36 36 108 180 

phase 

b 

50 

n 
-1 0 

-501 I 1 I I 1 
-180 -108 -36 36 108 180 

phase 
C 

Fig. 2 
K = 1, ten sensors, 100 snapshots, SNR of the weaker source equal to 20 dB, 
8, = 69" and 8, = 75"; ~ computed bias for Ip I = 1; ~ ~ - - computed bias 
for Ip I = 0.1; * averaged bias for Ip 1 = 1; + averaged bias for Ip  I = 0.1 
LI bias at o, 
b bias at o, 
c bias at o, 

Bias for forwardlbackward smoothing 
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loo\ 80 

60 l\\L I 
'I 
'I 

i ', 

O l  1 I I I 
000 006 012 018 0 2 7  030 

angular separatior 
Fig. 3 Resolution threshold for forwardlbackward smoothing 
K = I ,  seven sensors, Ip I = I and 100 snapshots; ~ computed threshold for 
Q = O  ~~~~ 

O ;  computed threshold for Q = 30"; . . . . . . . computed threshold for 
Q = -60"; averaged threshold for Q = 0"; + averaged threshold for Q = 30"; 
0 averaged threshold for Q = -60" 

phase 
Fig. 4 Resolution threshold for forwardlbackward smoothing 

computed K = 1, ten sensors, 100 snapshots, 8, = 69" and 8, = 75"; ~ 

thresholds for Ip I = 1; - - ~ ~ computed threshold for Ip I = 0.1; * averaged 
threshold for I p  I = 1; + averaged threshold for Ip  I = 0.1 

-5 r 

-1 2 L 

I 1 Y 
I 

005 010 015 020 025 030 
angular separation 

Fig. 5 
K = 2, ten sensors, Ip I = 1, SNR = 30 dB and 100 snapshots; ~ computed 
bias for Q = 0"; ---- computed bias for Q = 30"; .. .... computed bias for 
Q = -60". * averaged bias for Q = 0"; + averaged bias for Q = 30"; 0 averaged 
bias for Q = -60" 

Bias at one of the arrival angles for forward-only smoothing 

, 

415 



! I -  -3 6 

++ - - +- - -2 - -+- - -+- - - 2.- 
-50 I I I I I 

-180 -108 -36 36 108 180 
Phase 

a 

-75r 

-22 c 

-36 
n 

-50 
-180 -108 -36 36 108 180 

phase 
b 

-15, 

-221 

L - 43 

-50 
-180 -108 -36 36 108 I80 

phase 
C 

Fig. 6 
K = 2, ten sensors, 100 snapshots, SNR of the weaker source equal to 30dB, 
8 ,  = 69" and O2 = 75"; ~ computed bias for I p  1 = I ;  - - - - computed bias 
for I p 1 = 0.1 ; * averaged bias for 1 p I = 1 ; + averaged bias for 1 p IqO. I 
n Bias at w ,  
b Bias at w 2  
c Bias at w j  
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Bias forforward only smoothing 

151 
01 I I I I I 
005 010 015 020 025 030 

angular separation 

Resolution threshold for forward only smoothing Fig. 7 
K = 2, ten sensors, I p /  = 1 and 100 snapshots; ~ computed threshold for 
4 = 0"; ---- computed threshold for 4 = 3 0 ;  . . . . . . '  computed threshold for 
4 = -60"; * averaged threshold for 4 = 0"; + averaged threshold for 4 = 3 0 ;  
0, averaged threshold for 4 = -60' 

01 I I I I I 
-180 -108 -36 36 108 180 

phase 

Resolution threshold for forward only smoothing Fig. 8 
K = 2, ten sensors, 100 snapshots, 0, = 69" and O2 = 75"; ~ computed 
threshold for 1pl = I ; - - - -  computed threshold for I p I  = 0.1; * averaged thresh- 
old for 1 p 1 = I ; + averaged threshold for 1 p I = 0. I 

6 Conclusion 

We have derived the bias and resolution threshold of the 
MUSIC method with forward/backward smoothing and 
forward-only smoothing for two coherent sources with 
different phase and unequal power. The numbers of sub- 
arrays used for derivation are one for forward/backward 
smoothing and two for forward-only smoothing. Results 
show that the resolution threshold of the forward/ 
backward smoothing scheme is highly dependent on the 
phase difference between the two coherent sources 
whereas that of the forward-only smoothing is not, 
except when the power ratio of the two sources is close to 
1. The resolution thresholds associated with both of these 
smoothing schemes also depend on the power ratio of the 
two sources and are mainly dictated by the SNR of the 
weaker source. The simulation results indicate that the 
resolution threshold of the forward/backward smoothing 
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Table 1 : Resolution probability for forward/backward 
smoothing with 100 snapshots, 7 sensors, 100 simulations, 

Angles of Ang. sep. Q = -60" = 0" Q = 30" 

I,I=1 

arrival 
2w, SNR Prob. SNR Prob. SNR Prob. 

84 79 0.0514 40 0.39 57 0.30 49 0.28 
41 0.46 58 0.37 50 0.35 
42 0.57 59 0.48 51 0.48 
43 0.64 60 0.60 52 0.62 

71 65 0.1231 23 0.34 34 0.24 42 0.29 
24 0.41 35 0.37 43 0.39 
25 0.52 36 0.53 44 0.52 
26 0.59 37 0.67 45 0.67 

66 60 0.1493 20 0.35 29 0.22 45 0.25 
21 0.40 30 0.33 46 0.38 
22 0.50 31 0.46 47 0.56 
23 0.63 32 0.59 48 0.64 

62 56 0.1694 17 0.37 27 0.29 57 0.28 
18 0.45 28 0.41 58 0.41 
19 0.52 29 0.56 59 0.51 
20 0.60 30 0.67 60 0.55 

56 50 0.1979 15 0.33 23 0.25 41 0.16 
16 0.40 24 0.38 42 0.26 
17 0.46 25 0.52 43 0.47 
18 0.59 26 0.68 44 0.65 

48 41 0.2736 9 0.38 15 0.28 24 0.26 
10 0.41 16 0.40 25 0.45 
11 0.49 17 0.48 26 0.60 
12 0.56 18 0.60 27 0.69 

4 e2 

with K = 1 is usually smaller than that of the forward- 
only smoothing with K = 2 except when the absolute 
value of the correlation coefficient is very close to unity, 
i.e. the phase difference between the two coherent sources 
is close to ( M  - l)w, or ( M  - l)o, - z. 
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9 Appendix 

9.1 Derivation of eqn. 52 
Since B k ,  k = 1, . . . , M ,  are a set of orthogonal vectors, 

r8a1 
cal 82 ... 

Define 

and 

r .  I = W. 13 . . . /jiM]' (64) 

where Bik, i, k = 1, 2, ..., M ,  is the ith element of the 
vector D k ,  k = 1, 2, . . . , M .  Using eqns. 63 and 64, eqn. 62 
can be written as 

In eqn. 65, the elements off the main diagonal are zeros. 
Therefore, we have 

dfdi+l + rf'ri+l = 0 (66) 

for i = 1, 2 , .  . ., M - 1. Using eqn. 64, the right-hand side 
of eqn. 52 becomes 

M - 1  

= C + i + l  
i =  1 

Using eqn. 66, eqn. 67 can be written as 

which is eqn. 52. 
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9.2 Derivation of eqn. 53 
Substituting eqn. 48 into eqn. 10 we get 

+ ($2) 

1 
= Q(d + 

2 

x 1 {Ai + Bi + C i  + Di + Ei + Fi + G i }  
i =  1 

+ o($) 

Here, 

(74) 

k # i  f # i  

-1  (69) G .  = - 
' 4  

(70) Since 1 Ci = 0, 1 ( E i  + Fi)  = 0, and Di and Gi are close 
to zero for w equal to w l ,  w2 and w,, we have from eqn. 

1 A i d  
2 (A; - rJ2y - { ( M  - 2) I B?4w) l 2  - Q(w)) 

478 IEE  PROCEEDINGS-F, Vol. 138, NO. 5,  OCTOBER 1991 


