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ABSTRACT of zeros of d F ( e j W ) / d w  [2]. Generally speaking, the maximally 
In this paper, we derive some properties of maximally flat R-regular 
Mth-band FIR filters. We show that the R-regularity implies max- 
imally flat frequency response at w = 0. The R-regular con- 
straints are a set of linear equations with complex coefficients. We 
can convert these complex-value equations to equivalent ones with 
only real coefficients. We also show that it is possible to com- 
pletely determine the filter coefficients by R-regularity. Design 
examples are presented to illustrate the R-regularity properties and 
the effectiveness of the proposed approach. 

1. INTRODUCTION 

Mth-band filters are often used to design efficient digital sampling 
rate conversion systems for real time operations [l]. The impulse 
response h(n) of an Mth-band FIR filter of order N has the prop- 
erty that 

(1) 

where L is the center of symmetry. That is, one of the M polyphase 
components is equal to ~ ( L ) z - ~  which is just a delay. An Mth- 
band filter satisfying the constraint of Eq. (1) in time domain has 
the following equivalent property in frequency domain [3,4, 21 

h ( L  + M e )  = h ( L )  &(e) ,  e = O , f l , f 2 , .  . . 

M-l  

, j ( z ~ k l M ) L ~  ( , j ( u + 2 ~ k l M )  ) = Il.lh(L)e-j"L (2) 

where H(ej")  is the frequency response of the filter. Usually, 
h(L)  is assigned to be 1/M for normalization. In [3], constraint 
of the frequency response and bounds of passband and stopband 
ripples were derived. In [5] ,  a linear-phase FIR Mth-band filter is 
decomposed into cascaded several FIR subfilters which is designed 
simultaneously by Remez-type algorithm. In [4], nonlinear-phase 
Mth-band FIR filters with reduced group delay were investigated 
and designed by using the eigenfilter approach. 

Mth-band filter with R-regularity implies that there are R ze- 
ros at W k  = 21rk/M, 1 5 k 5 M - 1 on its frequency response. 
In [4], the R-regularity is transformed into the linear constraints in 
the impulse response. In this paper, we derive several properties of 
the R-regular Mth-band FIR filter. We will show that the normal- 
ization in Eq. (2) is achieved if the frequency response at w = 0 
is unity. Moreover, the R-regularity also implies maximally flat 
frequency response at w = 0. Based on the properties, the lin- 
ear equations constraining the impulse response can be split into 
several polyphase equations with fewer coefficients involved. 

A lowpass FIR filter with frequency response F(e3") is max- 
imally fiat if its impulse response is determined by the flatness at 
w = 0 and w = 7r, in which the flatness is defined as the number 

k=O 

f a t  Mth-band FIR filter cannot be completely determined by the 
fatness at W k  since the number of flatness does not match the fil- 
ter coefficients in general . In this paper, we apply the concept 
of the maximally flatness to design of R-regular Mth-band FIR 
filters, and give a situation under which the impulse response of 
Mth-band FIR filter is solved by the flatness at wk.  

2. PROPERTIES OF R-REGULAR MTH-BAND FIR 
FILTERS 

Let H ( z )  be the transfer function of an causal Nth order Mth- 
band FIR filter. In this paper, we consider the general case in which 
N and L can be arbitrary integers. Suppose ((L)),u = r where 
( ( L ) ) M  denotes L modulo M ,  the transfer function H ( z )  can be 
expressed as 

N 

H ( z )  = h(n)z-% + h ( L ) C L .  (3) 
n=O 

( ( n ) ) M f r  

If the frequency response H ( d " )  is R-regular with R zeros at 
wk = 2.?rk/M for 1 5 k 5 M -  1, then the transfer function H ( z )  
has R zeros at z = W",  1 5 k 5 M - 1, where W = e- j2*IM 
is a Mth root of unity. The location of these zeros implies that 
H ( z )  can be factored as H ( z )  = H l ( z ) [ l +  2-I + z-' + . .  . + 

Since H(e3")  has R zeros at W k  = 27rk/M, 1 5 k 5 M - 1, 

z-(A4-l) R 1 .  
the following equations have to be satisfied: 

2 h ( n ) n w k n  + h ( L ) L w k n  = 0 
n=O 

( ( " ) ) M # r  

or, specifically, 

N N 

+ 5 h(n)nqWkn + . . .  + 2 h(n)nqWkn 
n = O  n=O 

( (n) )A4=7+1 ((nl1.W = M -  1 

+ h ( L ) L w k n  = 0 (4) 

for 1 5 k 5 M - 1 and 0 5 q <_ R - 1. There are R ( M  - 1) 
equations in Eq. (4). In additional, the frequency response at w = 
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0 is assigned to be unity, that is, 
N 

H(ejo) = h(n)  + h ( ~ )  = 1. ( 5 )  
n = O  

( ( n ) ) M # .  

We will show that the R-regular Mth-band FIR filter constrained 
by Eqs. (4) and ( 5 )  has some interesting properties. 

Generally speaking, Eqs. (4) and ( 5 )  can't be solved exactly 
since the number of equations is less than the number of unknowns. 
However, it is possible to simplify these equations. Consider the 
R ( M  - 1)  equations in Eq. (4) and note that 

W k ( l ' f f p + q )  - - e - 3 2 m k ( M ~ S q ) / M  = e - i 2 r k q / M  = Wkq 

if p and q are integers. Accordingly, Eq. (4) can be written as 

1 

Ao(q) + WkAi(q) + . . .  + W('-')kA~-i(q) = 0 ( 6 )  
for 1 5 k _< M - 1 and 0 5 q 5 R - 1 where 

N 

A,(q) = h(n)n4,  (7) 
n=O 

( (  n ) ) M  =P 

forp  = 0 , 1 , .  . . , T - 1, T + 1 , .  . . , A4 - 1 and i l , ( q )  = h(L)Lq. 
By setting q = 0 in Eq. (6 ) ,  we have A4 - 1 equations which is 
represented as 

Ao(0) + WkAl(0) + . . . + W(hf-l)kA M - l ( O )  = 0, 
or, equivalently, 

N 'V 

h(n) + W k  h(n) + ' ' ' + Wk'h(L)  
n = O  n=O 

( ( n ) ) , u = O  ( ( n ) ) M = l  

+ .  . . + w"('L'-') 5 h(n)  = 0 (8) 
n=O 

( ( n ) ) M = M - - l  

for 1 5 k 5 M - 1. Dividing Eq. (8) with W k T  and adding these 
M - 1 equations together, we have 

cy0 2 h(n)+a i  h ( n ) + . . . + ( M  - l ) h ( L )  
N 

n=O n = O  
( ( n ) ) M = O  ( ( n ) ) M = l  

+ " . + c Y , M - l  2 h(n) = 0 (9) 
n=O 

( (  n )  ) M = iM - 1 

where 
M - 1 

L y p  = w ' " ( p - r )  = -1 
k=l 

f o r p  = O , l , .  . .  , r  - l , ~  + l ; . . , M  - 1. Sincep-  T is not 
divisible by A t ,  then we have ap = -1 [7]. Consequently, Eq. (9) 
is simplified as 

N 

- 5 h(n) - h(n) - . . . + (  M - l )h(L)  
n = O  n=O 

( ( n ) ) M = O  ( ( n ) ) M = l  

- . . .  - 2 h(n)  = 0 
n = O  

( (  n ) ) M = ibf - 1 

or, alternatively, 

+ c h(n) = M h ( L )  

However, because we constrain the unity DC gain at w = 0 and 
express the constraint by Eq. ( 5 ) ,  we can obtain the following prop- 
erty. 

Property 1. For the R-regular Mth-band FIR filter whose 
frequency response is constrained to be unity at w = 0, the cor- 
responding impulse response at the center of symmetry is equal to 
l/M, i.e., 

(10) 
1 

M h(L)  = -, 
for anyfilter order N and the center of symmetry L. 

Property I is interesting and useful. In the design of the Mth- 
band FIR filters, it is an usual step to assign l / M  to h(L) .  This 
property implies that this assignment can be replaced by the DC 
constraint if the transfer function has zeros at t = W k ,  1 <_ k 5 
M - 1. However, more properties are revealed based on Property 
1. Dividing Eq. ( 6 )  with W k T  and adding these M - 1 equations 
together, the resulting R equations can be expressed as 

or 
1 

M Ao(q) + . , , + -Lq + . , . + AM- I (4) = Lq , 
or 

iv 

for 0 5 q 5 R - 1. Since the above equations can be regarded as 
R "flatness" conditions for the frequency response at w = 0 and 
can be expressed as 

we have the following property. 
Property 2. For the R-regular Mth-band FIR$lter with trans- 

fer function H ( z ) ,  H ( z )  - z - ~  has afactor of (1 - z - ' ) ~ .  In 
other words, H(e3")  is approximated to e-3Lw at w = 0 in maxi- 
mally flat sense. 

We known that the transfer function H ( z )  of a R-regular Mth- 
band FIR filter can be factored into the formof H ( z )  = Hl(z)[l+ 

torization of H ( t )  - z - ~  = H 2 ( t ) ( l  - z - ' ) ~ .  In summary, the 
R zeros of H ( z )  at W k ,  1 5 IC _< M - 1 imply R zeros at unity 
of H ( z )  - F L ,  where W k  together with unity are the whole Mth 
roots of unity. 

To solve the impulse response h(n) constrained by Eqs. (4) or 
(6) will take more efforts and computing time since the coefficients 
in these equations are complex due to the factor W .  However, 
it is possible to convert these equations to another ones with real 
coefficients only. If we regard Ap(q)  as unknowns in Eq. (6 ) ,  there 
are M - 1 equations (since k = 1 , 2 , .  . . M - 1) and M - 1 

z - l  + t-2 + . . , + t - ( l ' f f - l )  ] R . Property 2 implies a similar fac- 
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It is easy to show that unknowns (since p = 0 , 1 , .  . . , r - 1, r + 1 , .  . . , M - 1). That 
is, A,(q) may be solved exactly. To find the values of Ap(q) , we 
rewrite Eq. (6) in matrix form as follow 

and 

x = [Ao(q), Al(q) , .  . ' , A7.--1(Q), A7+1(q), ' ' ' , .4iZ.I--l(q)I' I 

for 1 5 k 5 M-1; 0 5 q 5 R-1 where the superscript ' denotes 
the transpose. It is easy to find out a solution for Eq. (12) by in- 
spiration. In fact, A,(q) = LY/M is an unique solution to Eq. (6) 
and (12). Note that A is nonsingular because det(A) is a Van- 
dermonde determinant generated by distinct elements. Therefore, 
the solution to Eq. (12) is unique [6]. Since the above derivation is 
based on Property 1 which is deduced from Eq. (5 ) .  we obtain the 
following property. 

Property 3. The R ( M  - 1) + 1 equations expressed by Eq. (4)  
as well as Eq. (5) can be simplijied to R ( M  - 1) equations repre- 
sented as 

f o r p  = 0 , 1 , .  . . , r  - 1,r + 1 , .  . . , M  - 1 andO _< q _< R - 1. 
In summary, Eq. (4) and ( 5 )  can be reduced to Eq. (13) as 

well as h(L)  = 1 / M .  However, the coefficients in Eq. (13) are 
real numbers while the coefficients in Eq. (4) are complex. The 
computation with real numbers involved needs much less memory 
than that with complex numbers. 

3. DESIGN OF MAXIMALLY FLAT R-REGULAR 
MTH-BAND FIR FILTERS 

In Eqs. (4) and (5) ,  or equivalently, Eq. (13), it is obvious that 
the number of equations is determined by R and M .  For a given 
M ,  we have more equations if R is increased. If the number of 
zeros at W k  is all the same, the number of unknowns is generally 
not equal to the number of equations, and consequently h(n) can 
not be solved by Eqs. (4) and ( 5 )  only. However, it is possible 
to solve the impulse response exactly form Eqs. (4) and ( 5 )  for 
some specific M, N and L. That is, it is possible to completely 
determine the R-regular Mth-band FIR filter by the zeros at W k  
for some M ,  N and L with a suitable choice of R. This design 
may be-regarded as a generalization of the traditional maximally 
flat filter. In this section, we will indicate the situations to achieve 
the maximally flat design. 

Let N, denote the number of coefficients to be determined in 
Eq. (3) and Np denote the number of filter coefficients in Ap(q)  
defined by Eq. (7). Let 1.1 denote the largest integer less than 2. 

N - L  1,J + 1, 

The following property indicates the sufficient condition for the 
design of the maximally flat R-regular Mth-band filters. 

Property 4. Eqs. (4)  and (5) can be solved exactly if 

( ( N ) ) M  M - 2, ( ( L ) ) M  = M - 1, 
and 

In fact, based on the Property 4, the impulse response can be 
solved not only by Eqs. (4) and ( 5 ) ,  but also by Eqs. (13). The 
closed form of the impulse response is 

(-l)mn:=;1(Mi + p  - L)  
( M m  + p - L)m! (R  - 1 - m)!) 

h ( M m  + p )  = 

f o r 0  5 m 5 R -  1 andO < p  5 M - 1 , p  # r = ( ( L ) ) M  

4. ILLUSTRATIVE EXAMPLES 

In this section, we gives some design examples to illustrate the 
properties derived in Sec. 2 and 3. 

Example 1. In the example, we will design the 14th order R- 
regular fourth-band FIR filter. The index of symmetry is 7. Thus, 
we have M = 4, N = 14, and L = 7. According Eq. 14, there 
is N, = 14 - 17/41 - 17/41 + 1 = 13 coefficients to be solved 
which are 

{h(O), h(4), h(8)1 h(12)}, { h ( l ) ,  h(5),  h(g) ,  h(13)) ,  
{h(2), h(6), h(10), h(1411, and { h ( 7 ) )  

where each group denotes the unknown coefficients in correspond- 
ing polyphase components. 

Since ((14))4 = 4 - 2 and ((7))4 = 4 - 1, according to Prop- 
erty 4 these impulse response can be solved by Eqs. (4) and (5) if 
R = L14/4] + 1 = 4. In fact, the coefficients of each polyphase 
components can be separated and solved by (M - 1) subequations 
of Ap(q) = Lq/M in Eq. (13). The resulting transfer function is 

1 - (-5 - 8z-I - 7 Y 2  + 3 5 ~ - ~  + 7 2 ~ - ~  
512 
1 0 5 ~ - ~  + 128z-' + 105z-' + 7 2 ~ ~ '  + 3 5 ~ ~ "  

H ( z )  = 

+ 
+ -7z-'2 - f 3 - 1 3  - 5z- '4 ) ,  

It is easy to shown that 

-1 H ( z )  = - 512 (5 - 12z-' + 5z-2) (1 + 2 - I  + z - 2  + .-3)4, 

and H ( z )  - z P L  = 

The designed filter has linear phase response since the impulse re- 
sponse is symmetric. Fig. l(a) and (b) show the impulse response 
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and magnitude response, respectively. The magnitude response is 
flat around w = 0 , ~ / 2  and T .  

Example 2. In the example, we also design the R-regular 
fourth-band FIR filter of 14th order. But the index of symmetry 
is reduced to be 5. Thus, we have M = 4, N = 14, and L = 5. 
According Eq. 14, there is N, = 14 - 15/41 - 19/41 + 1 = 12 
coefficients to be solved which are 

where each group denotes the unknown coefficients in correspond- 
ing polyphase components. 

We assign one degrees of freedom to be the unity DC gain 
constraint. Since the remain 11 constraints cannot be assigned to 
the 3 frequencies of 2 ~ / 4 , 4 ~ / 4  and 6 ~ / 4  evenly, the maximally 
flat design cannot be solved. However, if let R = 3 in Eqs. (4) and 
(5) and put the additional 2 degrees of freedom on the flatness at 
w = n, we can solve the impulse response. The resulting transfer 
function is 

It is easy to shown that 

-1 
__ (3 - z - ' )  (3 - 14z-l + 72-') 
2048 H ( z )  = 

x (1 + 2 - I ) z  (1 + 2-1 -I- 2-2 + 2-3))", 
and N ( z )  - z - ~  = 

(I - 

The impulse response is not symmetric. Fig. 2(a) and (b) show 
the impulse response and magnitude response, respectively. The 
magnitude response in Fig. 2(b) falls slower than that in Fig. l(b) 
since the degrees of flatness at DC in this example are less than the 
ones in Example 1. 

5. CONCLUSIONS 

In this paper, several properties of the R-regular Mth-band FIR 
filter are derived. We show that k ( L )  = 1/M if the frequency 
response at w = 0 is unity. Moreover, if the Mth-band FIR filter 
is R-regular, then we can show that its frequency response have 
R degree of flatness at w = 0. Based on these properties, the 
linear equations constraining the impulse response can be split into 
several sub-group equations with fewer real polyphase coefficients 
involved. Generally speaking, the Mth-band FIR filter cannot be 
completely determined by the flatness at wk.  In this paper, we 
apply the concept of the maximally flatness to the design of R- 
regular Mth-band FIR filters, and give a situation under which the 
impulse response of Mth-band FIR filter can be completely solved 
by the flatness at wk.  Design examples are presented to verify these 
properties. 
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Figure 1: Design of the maximally flat 14th order R-regular 
fourth-band FIR filter with symmetry index L = 7. (a) Impulse 
response and (b) magnitude response. 

Figure 2: Design of the maximally flat 14th order R-regular 
fourth-band FIR filter with symmetry index L = 5 .  (a) h p u l s e  
response, and (b) magnitude response. 
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