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Abstract

In this proposed three-year research
project, objectives are (1) to design search
space reduction method for simulation-
based OO, (2) to develop these methods into
tool modules as part of an integrated system
optimization platform, and (3) to apply
simulation-based OO to effective production
scheduling of 300mm foundry fabs. In the
first year, we have designed an OO-Based
Poalicy Iteration (OOBPI) method to handle
the combinatorial complexity of decisions
over the time axis for Stationary Markov
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decision problems. Utilizing the framework
of policy iteration, we approximate the
optimal cost-to-go and optimal decision of
each state by simulation-based OO. The
OOBPI method demonstrates, in preliminary
numerical studies, two orders of speed-up in
than policy iteration using traditiona
simulation for evaluating cost-to-go values.
To efficiently handle the large state space
under computing processor capacity and run
time limits, we have been investigating the
notion of contract algorithms in general and
ordinal computing budget allocation in
specific to further speed up the convergence
of OOBPI.

Keywords. ordinal optimization, policy
iteration,, simulation-based policy iteration,
Markov decision process, contract algorithm,
computing budget allocation

Flexibility and speed in operating a
complicated semiconductor fab are essential
to competitiveness in this e-business era
Externaly, markets change rapidly with
diversified consumer demands and short life
cycle of electronic products. Internaly,
infrastructure for operations quickly evolves
with advancement in process and tool
technologies and the emergence of new
information technology. As a result, fab



designs for highly modular and easily
re-configurable operations have been atrend
for foundry manufacturing, which lead to
many options for responding to market and
fab uncertainties. However, for a given
change, how a good option can be quickly
selected from a large amount of options
remains a critical challenge. With the sky
rocketing capital investment of 300mm fabs,
adopting a good option can result in
significant savings of cost.

In this project, we will address such a
critical need particularly for problems of
production scheduling, which is a significant
class of resource allocation problems in fab
operations. Mgjor fab scheduling problems
include how wafers should be released into a
fab and how they should be dispatched
among machines for processing. A popular
practitioners approach for scheduling the
production in a fab is to select from the
many empirical scheduling rules available
for IC fabs. As rule options differ by tool
groups, there is a combinatorial number of
rule options for the complete fab operations.
Further, operation objectives of a fab
dynamically change among throughput,
cycle time, on time delivery, etc. Dynamic
selection of scheduling rule based on fab
objective and state changes is therefore
needed for competitive operations, which
requires that a good option be selected in a
timely manner.

Another major concern is how to
analyze the performance of a semiconductor
fab for considered options, given its
tremendous  complexity. Computer
simulation technology has matured over the
past decade and is now commonly used in
industry. Simulation allows one to more
accurately specify fab operations through
the use of logically complex, and often
non-algebraic, variables and constraints.
This capability compliments the inherent
limitation of traditional  optimization.
However, the added flexibility often creates
models that are computationally intractable.
Furthermore, many alternative options (the

number could be combinatorial in many
cases) must be simulated in order to find a
good design. The total computation cost
for typica simulation-based approaches is
usually too expensive.

Central to our solution methodology is
a new control-theoretic approach to
simulation experiments. In particular,
ordinal optimization (OO)[HSV92], i.e,
determining relative, rather than absolute,
merits of candidate designs, show that a
much faster convergence can be achieved
when compared to traditional approach.
Our proposed research capitalizes on the
principles of ordinal optimization while
further improving upon its efficiency
through an optimal computing budget
allocation (OCBA) technique [CDC98]. The
great potential of developing an efficient
simulation methodology for semiconductor
fab based on OO and OCBA techniques has
been supported by the exciting results of the
PlI’s preliminary investigation. The Pl and
his colleague designed a OO- and
OCBA-based ssimulation system as shown in
Figure 1 and studied the problem of
dispatching rule selection over a much
simplified fab model [HCCO1]. Results
demonstrate that two orders of computation
time reduction over traditional simulations
can be achieved and that such a speed gain
can be exploited for dynamic rule selection
to effectively handle uncertainties.

In gpite of its superior computational
efficiency over the traditional simulations
and the insights generated in this application
study, the OO-based simulation needs to
cross a few hurdles before full-scale
application to dynamic selection of
scheduling rules for fab operations. First,
there are many more release policies and
dispatching rules desirable for evaluation
although the frequently used rules are just a
few. Second, the number of rule
combinations grows in a combinatorial way
over time. For example, m wafer release
policies and n dispatching rules over a
p-unit-time horizon constitute (mxn)® rule



options when the rule may change over
individual time units. Third, distinct rule
libraries are adopted for tool groups of
different characteristics. This leads to a
combinatorial growth of rule options over
the number of tool groups. Brute-force
application of OO-based smulation is
therefore infeasible.  Further research on
option search method exploiting the
OO-based simulation is thus needed.

To tackle the combinatorial rule options
over the number of tool groups, Hsieh et d
[HCCO3] have designed a fast simulation
methodology by an innovative combination
of the notions of ordinal optimization (OO)
and design of experiments (DOE) to
efficiently select a good scheduling policy
for fab operation. The DOE method is
exploited to largely reduce the number of
scheduling policies to be evauated by
OO-based  simulation. Preliminary
simulation results of applications to
scheduling wafer fabrications show that
most of the OO-based DOE simulations
require 2 to 3 orders of magnitude less
computation time than those of a traditional
approach, and the speedup is up to 7,000
timesin certain cases.

This proposed three-year research will
advance the design of new simulation
methods for full-scale semiconductor fabs
based on the OO principles and the insights
we have obtained [HCCO01, HCCO03]. There
are three objectives (1) to design search
gpace reduction method for simulation-
based OO, (2) to develop these methods into
tool modules as part of an integrated system
optimization platform, and (3) to apply
simulation-based OO to effective production
scheduling of 300mm foundry fabs.

In production scheduling problems, it is
advantageous that the scheduling rules are
changed from time to time, considering the
rapid change of demand and machine
availability. The decision for each time

period could be highly dependent with those
in other time periods. A magjor challengeis
that the number of alternative options grows
very quickly as the planning time horizon
becomes longer. For example, if there are
M dternative scheduling rules for
consideration in each time period and if we
want to look ahead for T periods. Then the
total number of aternative rule options is
(M)T, which can be very large if M or T is
not too small.

Dynamic  programming is an
optimization approach that transforms a
complex problem into a sequence of simpler
problems; its essential characteristic is the
multi-stage nature of the optimization
procedure. In this task, an ordina
optimization-based dynamic programming
will  be developed to handle the
combinatorial complexity over the time axis.
At the higher level, dynamic programming
transforms the complex  multi-stage
scheduling problem into a sequence of
single-stage optimization problems. At the
level of single-stage optimization problem,
the objective function (also called cost-to-go)
must be evaluated using discrete-event
simulation and severa alternative options
must be smulated. A key issue here is how
to solve the single-stage optimization
problem very efficiently, since many of such
single-stage problems must be solved in the
framework of dynamic programming. We
propose to use our OO-based simulation tool
for solving such single-stage problems by
taking advantage of exponential
convergence of OO and intelligence of
OCBA.

In the past 10 month of research, this
subproject has been focused on the design of
ordinal optimization-Based Dynamic
Programming (OODP) methods to handle
the combinatorial complexity of scheduling
policies over the time axis. Progresses
have been made in the design of a
simulation-based ordinal policy iteration
algorithm and the design of contract
algorithm for dynamic alocation of



computation budget.

I. Design of Ordinal Optimization-based
Policy Iteration Algorithm (OOBPI)

To explore the basic ideas, we first
consider a specia class of dynamic
optimization problem [Ber76], the Markov
Decision Process (MDP) with finite state
and action spaces, by defining appropriate
states, controls, transition probabilities, time
horizon, and stage-wise cost function. The
stage-wise cost function is so complicated
that it can only be evaluated by simulation.

One basic agorithm for solving a
stationary MDP is policy iteration (PI).
The PI agorithm consists of a policy
evaluation step in which the cost function
value of the current policy is computed, and
a policy improvement step where, if possible,
the current policy is improved upon. These
two steps are repeated iteratively until some
stopping requirements are met. The
evaluation step of policy iteration consists of
solving a set of linear equations called the
average evaluation equations (AEE). Using
the solution to the AEE, the improvement
step then employs a one-step analysis to
decideif the current policy can be improved.

In the case that stage-wise cost function
IS so complicated that it can only be
evaluated by simulation, a simulation-based
policy iteration (SBPI), has been proposed
in [?7]. Rather than exactly solving the
AEE in the policy evaluation step, SBPI
estimates solutions of the AEE via
simulation and uses them in the policy
improvement step. Note that this procedure
does not require the solution of the large
linear system. However, when the
dimension of statesislarge, SBPI may spent
lots of time doing simulation to evaluate the
cost-to-go of individual states under a given
policy. When the dimension of control
space is large, the policy improvement step
will also require  time-consuming
simulations.

To speed up the computation, we
develop, in this research, a fast simulation
methodology by an innovative combination
of the notions of ordinal optimization (OO)
and SBPI. The key idea is that For every
state, instead of finding the exact expected
cost-to-go among admissible controls, our
approach compares relative orders of
expected cost-to-go among admissible
controls to a specified level of confidence
[Che9g]. It thus finds a good enough rule
with a much reduced simulation time
requirement. The schematic diagram of the
method is shown in Figure 2 and the OOBPI
algorithm given in the Appendix.
Preliminary simulation result over a 10-state
and 4-control per state MDP problem shows
that OOBPI is more than 200 times faster
than SBPI.

[I. Design of Contract Algorithm-based
Computation Budget Allocation
(CABCBA)

To efficiently search over the large state
space under processor capacity and run time
limits, there needs a method to properly
allocate computing budget. We have been
investigating the notion of contract
algorithms  (Zilberstein, Charpillet, and
Chassaing, 2003), where the solution quality
of an algorithm improves as the alocated
amount of computation time increases.
Exploiting the design of SBOPIA, we are
establishing a stochastic performance profile
Pa(q|t) denoting the probability of getting an
optimal-cost-to-go estimate of quality q with
budget time t by the OOBPI agorithm.
Dynamic computing budget allocation will
then be designed based on such profile.
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Figure 1. An Ordinal Optimization-Based Simulation Framework
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Figure 2. Flowchart of the OO-based Pl algorithm

Appendix: OOBPI Algorithm

e Policy of thek™iteration

b the simul ated best control = argtl\t/llJi n E(3 i ))}
i State index

I State at timet

S Set of state space

t Time epoch




Simulation replications

lo Number of initial simulation replications
r Number of incremental simulation replications
76 thew" simulation with policy 77 from statei
J (i
& \Vw A A A
= g(IO ! |1)+a |@(Il’ |2)+/\ + at |@(It ! It+l)+/\
~ 1Sy,
J (i) =FZJ”k(IW)
w=1
The real optimal cost-to-go while applying policy 77 in statei
J () ro
" snm{innk(iw)}
=l wa
Thew" simulated cost-to-go with control u JU (i) from statei
J(i,u,) _ n _
=g(i,u)+> p (W@, (i)
j=1
2
2(: _ 1 ! =/ 1 L~ .
a?(i,u) =—Z{J(',UW)‘[—ZJ("UW)}
r-1w.= N'sy
a Discount factor[] [O]]
P Satisfactory confidence level of correct control selections
U() | Admissible controlsof statei
00 Ordinal optimization
Probability of correct selection
P{CS} : :
=P{ the current top-ranking rule is actually the best one}
Pr(i , u) The transition probability matrix in statei with control u
APCS(i,u) | the probability of correction selection of control u at statei
u Them™ admissible control

P; (u)

The transition probability from statei to state j with control u

a(i, i)

Transition cost from statei to state |

= gfi, 7())




OOBPI Algorithm

Step O:

Set a satisfactory confidence level of correct control selection P°
Step 1: (Initialization)

Setk =0, select an arbitrary stationary policy 77
Step 2: (Policy evaluation)

Simulate the cost-to-go J , (i) of every statei O S by

~ 1o
J”k(I)EFlz_l:J”k(I'W)

with rreplications” (r, replicationsininitial)

whereJ (i, w) denotes thew" simulation with policy 77 from statei

30 (W)= glioniy) +a li,)+A +a' Tli i) +A
I, denote the state in timert.
a isthe discount factor;
a(i,j)= g(i,ﬂk l ))isthe transition cost from state i toj
Step 3: (Policy improvement)
For every statei (1S, find the minimal simulated state-wise cost-to-go among all
admissible controlsu OU (i),

n-

" (u)mnk(j)}

denote the simul ated best control b = argtI\E/lIJi n E(3 i ))}

~ a _ H 1 y
i.e. Mf(.n) E(Jﬂk (I))— MB{Q(I,U% 2,

calculate the APCS of control b at statei . i.e. calculate APCS(i, b)"

if APCS(i,b)>P", thenstop, 7**(i)=b

else add 7 simulation replications,

goto Step 2;

where APCS(i, b)is the probability of correction selection of control b at statei .
Step 4

If 77 = 1, then stop and set 77 = 77°; otherwise increment k by 1 and return

to Step 2.
 :areplication is defined as doing 1 simulation run®  per state with policy 77
A :A simulation run is defined as

(@ arrivethetermina state

(b) the simulation time horizontis greater than -2 .

loga
A: APCS(i, b)
. A S6u)-E23G0,)
= []PO0)<3, (uk= ] o | W_;/ o2(i,u) +rawj(i,b)
where P is the standard rnormal r cumulative distribution.



