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一、 中文摘要
本報告總結第三年在本計畫的支持下的研究成
果,包括三個層次的排程佳化方法:(1)以平穩
(Stationary)馬可夫決策問題為載具,設計出一個
結合模擬排序佳化 (Simulation-based Ordinal
Optimization) 與目標函數值疊代 (Simulation-
Based Value Iteration, SBVI)的演算法，作為以快
速模擬排序佳化來選擇動態排程法則的理論基
礎。(2)針對反向拍賣競標(reverse auction)市場
機制,建立設計公司的訂單分配與合約製造商的
生產排程決策模型,以計量與模擬分析來探討合
約製造商間在競合關係下的生產排程策略。(3)
以衛星取像排程問題進行拉氏釋限 (Lagrange
relaxation)法與禁忌搜尋法於單機排程應用效能
的分析比較。
關鍵詞:排序佳化、模擬、目標函數值疊代、演
算法設計、反向拍賣競標、生產排程

Abstract
The third year of research efforts developed
scheduling methods in three aspects. (1) The
design of ordinal optimization-based value
iteration algorithm (OOBVI) combines ordinal
optimization (OO) with simulation-based value
iteration (SBVI) into an efficient method for
solving complex stationary Markov decision
problems (StMDPs). The method lays a
foundation for dynamic composition of production
scheduling policies via quick simulation. (2) A
reverse auction-based model captures the gaming
interactions between order assignments from a
design house and the production
planning/scheduling of individual contract
manufacturers (fabs). The model enables
quantitative analysis and simulation study of the
production planning/scheduling policies in a
co-opetition setting. (3) A study compares

Lagrange relaxation-based and Tabu search-based
single machine scheduling algorithm over a
satellite imaging problem.

Keywords: Ordinal Optimization, Simulation,
Value Iteration, Algorithm Design, Reverse
Auction, Production Scheduling

二、 緣由與目的
At fab operation control level, major

scheduling problems include how wafers should be
released into a fab and how they should be
dispatched among tools for processing. A
popular practitioners’ approach for composing a 
dispatching policy for the whole fab is to select
from the empirical scheduling rules available for
individual tool groups. Dispatching rules for
each tool group should be designed based on the
specific characteristics and operation goals of the
tool group. Empirical or heuristic rules are
collected for individual tool groups. The industry
of VLSI wafer fabrication has indicated a strong
need for an efficient simulation tool for
dispatching policy composition from the existing
library.

Policy composition by using the traditional
simulation approaches is not fast enough in
computation for fab dispatching. Recent research
[1] has shown that comparing relative orders of
performance measures converges much faster than
the performance measures do. This is the basic
idea of ordinal optimization (OO). OO can be
used as a means for solving dispatching rule
selection problems if our goal is to find a good
enough scheduling policy rather than to find an
accurate estimate of the performance value of a
scheduling rule.

Hsieh et al. [2, 3] has applied OO in
conjunction with a technique called optimal



computing budget allocation(OCBA) to dynamic
selection of scheduling rules for fabs and has
shown its potential for real applications.
However, a homogeneous set of dispatching rules
among tool groups is assumed in [2]. As the
number of candidate policies grows in a
combinatorial way with the number of tool groups,
a brute-force application of the OO and OCBA
method to selecting a good policy is still
infeasible.

In the first year research we designed a fast
simulation methodology by an innovative
combination of the notions of ordinal optimization
(OO) and design of experiments (DOE) to
efficiently select a good scheduling policy for fab
operation, where the DOE method is exploited to
largely reduce the number of scheduling policy
combinations among various tool groups to be
evaluated by the OO-based simulation.
Simulation results of applications to scheduling
wafer fabrications show that most of the OO-based
DOE simulations require 2 to 3 orders of
magnitude less computation time than those of a
traditional approach.

The second year of research developed a fast
simulation for solving the Markov decision
process formulation of dispatching problem by
combining ordinal optimization and policy
iteration. We also investigated the applicability of
re-enforcement learning to Markov decision
process formulation of dispatching problems and
assessed the needs for a logistic information
service provider for the electronics industry of
Taiwan.

In the third year of research, we aimed at the
following three objectives based on our research
results of the first two years:
(1) to design an efficient and simulation-based

method for dynamic selection of a production
scheduling policy from available options over
time,

(2) to model the gaming interactions between order
assignments from a design house and the
production planning/scheduling of individual
contract manufacturers (fabs), and

(3) to further analyze single machine scheduling
methods as a decision module in our simulation.

三、 研究進度與成果
III.1 Ordinal Optimization-Based Value

Iteration (OOBPI)
In many stationary Markov Decision Problems

(StMDPs) modeling of real problems: for instance,

inventory control problems, computer, and
communication networks, both the transition
probability and cost function must be generated via
computer simulation because of problem
complexity and uncertainty. Simulation-Based
Policy Iteration (SBPI) is a typical solution in
these problems. SBPI includes a sequence of
policy evaluation and policy improvement steps
(Figure 1.1). In Policy evaluation step, we
evaluate cost-to-go (CTG) value for each state via
simulation of multiple stages. It is the most
time-consuming step in SBPI algorithm. It means
that if we want to decrease CPU time with a good
optimal policy accuracy (PA), we have to shorten
the CPU time in the policy evaluation step.
Observation of simulation experiments with SBPI
indicates that rough estimation accuracy of CTG
may lead to good enough policy but much less
simulation time. Though the value estimation is
rough, policy accuracy improves gradually with
iteration process. This motivates our search and
idea of improvement approach of algorithm.

In this task, we first propose Simulation-Based
Value Iteration (SBVI) ([4]) to solve StMDPs
(Figure 1.2). In the policy evaluation step as
compared with SBPI, SBVI evaluates stage-wise
cost only and adds it to the estimation of CTG
from the previous iteration to update the values in
current iteration. Estimation of CTG is rougher
than that of SBPI in early iterations but still leads
to good enough policy and spends less simulation
time (Table 1.1). And PA will approach optimal
policy with iterations. In the numerical study that
compares SBPI with SBVI by a medium
dimension problem, simulation time can be saved
around two orders in SBVI (Table 1.1) (Figure 1.3)
(Figure 1.4) than SBPI(Table 1.2) (Figure 1.5)
(Figure 1.6) to get the same level policy accuracy.
However, simulation time of SBVI in high PA
rapidly grows with PA and problem dimensions.

We further exploit the property that optimal
ranking of decisions for each state may have been
formed even when CTG estimation accuracy is
rough and propose an Ordinal Optimization-Based
Value Iteration (OOBVI) algorithm (Figure 1.7) by
combining the concept of OO with SBVI. OOBVI
adopts the approximate probability of correct
selection (APCS) instead of CTG estimation
accuracy as the stopping criterion of policy
evaluation.

Simulation study of a medium dimension
problem shows that OOBVI can save four times of
simulation time as compared with SBVI to reach
the same PA(Table 1.3) (Figure 1.8) (Figure1. 9).



Further simulation studies show that the growth of
simulation time in OOBVI is approximately linear
with respect to the increase in PA, which is
exponential in SBVI. We therefore project that
OOBVI is more efficient than SBVI in large
dimension problems.

In the OOBVI described above, the same
decision ranking accuracy is used for all states in
the policy evaluation step, which is unnecessary.
We then propose an innovative idea of variable
decision ranking accuracy among states and design
a scheme of computing budget allocation over
states (CBA-S). The combination of CBA-S with
OOBVI may achieve a high PA at a relatively low
simulation time. Simulation study of a medium
dimension problem shows that OOBVI with
CBA-S can save ten folds of simulation time as
compared to using OOBVI only.

III.2 Reverse Auction-Based Job Assignment to
Foundry Fabs
In most of the production scheduling literature,

scheduling methods are developed under the
assumption of centrally available information, or
distributed information with cooperative behavior.
Nevertheless, in a real world supply chain, each
entity has its own individual objective and
privately held information. The centralized
production scheduling does not apply to such
problems [5,6].

In this task, we consider a contract
manufacturing environment, where there is a job
provider who offers a set of jobs and calls for bids
from a few fabs to process the jobs. This task
assumes a simplified problem, where each job has
only one operation and requires a certain
processing time of a unit capacity from a foundry
service provider. The job processing is
non-preemptive; that is, once a job is started, no
interruptions are allowed until completion. A job
can only be assigned to one fab at a time. Each job
has a time window for processing between its
release date and due date. If a job is started
before the release date or delivered after the due
date, there will be a penalty incurred on the
foundry service provider. We assume that jobs
under consideration are already available for
processing.

The job provider out-sources the job
processing to qualified fabs and sets for the
processing of each job a maximum payment. The
fabs are competitive to each other. Each fab has
its own private information such as the actual

capacity, the job processing cost, the valuation of
getting a job and its objective function. Without
knowing such private information of fabs, the job
provider cannot do centralized job scheduling.
Auction-based job scheduling mechanisms are
therefore frequently adopted.

Among various auction markets [7], we
consider a reverse auction-based mechanism
(Figure 2.1). The objective of the job provider
(auctioneer) is to minimize its payment cost of
completing all the jobs in hand plus the penalty cost
of unassigned jobs (Figure 2.2), if any. By
distributing job information to all the qualified fabs
(bidders), the job provider solicits individual fabs to
bid on the jobs, where a bid on a job specifies the
beginning time, the ending time and the discount
from the maximum payment for processing the job.
In each round of bidding, the job provider first
selects the fab that offers the highest discount of
each job as the temporary assignment of the job.
The initial discounts are zero for all jobs.

Given the temporary discounts on
assignments of jobs, a fab then evaluates and
schedules to determine whether to offer new bids on
various jobs. The new discount offer for a job
must be higher than its current value. The
objective of a fab is to maximize the payment it
may receive from processing the jobs minus the
earliness/tardiness penalty for each job not
processed within the desired time window of the
job(Figure 2.3). Note that the earliness/tardiness
penalty of a job is fully compensated by the job
winning fab. After the job provider collects the
bids from all the fabs, one round of bidding ends.
Such a bidding procedure repeats round by round
till no new bids from any fabs. The scheduling
problem of the bidder is a NP hard scheduling
problem itself. We apply the Lagrangian Relaxation
to decompose the problem. Because there are
several independent decision makers in the auction,
the concept of an optimal solution is not suitable to
use. We then use the concept of an equilibrium
solution to evaluate the result. We define our
equilibrium solution as that no entity can benefit
from changing its strategy given the other entities’
strategies.

Numerical studies are performed to examine
the optimality of a bidder’s schedule.  There are 
two test case designs: medium and overload
loading intensity. The optimality metric is the
duality gap, which is defined as the cost of dual
solution minus the cost of the final and feasible
solution divided by the cost of the final and



feasible solution.
A1) Medium case
The loading intensity is 46.66% of the capacity in
this case. How the duality gap varies as the LR
iteration is shown in (Figure2.4). Since the
duality gap goes to zero, an optimal solution is
achieved in this case.
A2) Overload case
Its loading intensity is 113.33% of the capacity in
this case. The scheduling is expected to be difficult
and the dual solution will have many capacity
constraint violations. (Figure2.5) shows how the
duality gap evolves with respect to the LR iteration.
The final duality gap in this case is 1.89%. These
preliminary results indicate that the LR solution
method leads to near-optimum solutions.

Auction Experiment
This experiment evaluates how the dimension
factors such as the number of bidders and the
number of jobs may affect the number of auction
rounds and the solution. We conjecture that the
lager the number of bidders (jobs), the more
rounds needed to complete the auction. Our
reasoning is that when the number of bidders (jobs)
increases, the possibility of counter biddings (the
number of bid options) increases and leads to the
increase of auction rounds.
B1) Number of bidders
In this case, we change the number of bidders but
fix the number of jobs. We compare a 2-bidder and
a 4-bidder examples, both with 25 jobs. The 2
bidders of the 2-bidder example have the same
parameters as bidder 3 and 4 in the 4-bidder
example. In the 4-bidder auction, it takes 12
rounds to complete the auction while it takes 6
rounds in the 2-bidder auction. Results of (Table
2.5 ) match our conjecture.
B2) Number of jobs
In this case, we consider 13 and 25 jobs for the
same 4 bidders. The 13 jobs is a subset of the 25
jobs. The bidder and job data is the same as that
of B1. In the 25-job auction, it takes 12 rounds to
complete the auction while it takes 7 rounds in the
13-job auction. Results of B2 also match our
conjecture.

III.3 Comparison of Lagrange Relaxation and
Tabu Search-based Single Machine
Scheduling

The earth observation satellite, FORMOSAT-2
[1], is designed to periodically monitor and

provide timely imaging data of Taiwan island.
The daily imaging scheduling problem of
FORMOSAT-2 includes considerations of various
imaging requests (jobs) with different reward
opportunities, changeover efforts between two
consecutive imaging operations (tasks), cloud
coverage effects, and the availability of satellite
resource. It belongs to a class of single-machine
scheduling problems with salient features of
job-assembly characteristic, sequence-dependent
setup effect, and the constraint of operating time
window. The scheduling problem is first
formulated as a monolithic integer programming
problem, which is NP-hard in computational
complexity [2]. An approximation of the
weighted penalty of incomplete jobs by penalties
of individual tasks facilitates a separable integer
programming problem. For problems of such
high complexity, dynamic programming and
exhaustive search techniques are either too
time-consuming or impractical for optimal
solutions. Rule-based or heuristic approaches
can reduce the computation time drastically but
the resultant optimality may be unsatisfactory.

Mathematical programming approaches, such
as Lagrangian relaxation [3], have the advantage
of computational efficiency when the optimization
problems are decomposable. In many cases, the
computation time increases almost linearly with
the problem size. However, a heuristic is usually
needed to modify the dual solution into a feasible
solution. In view of the separable problem
structure, Lin et al [8] adopted the Lagrangian
relaxation and sub-gradient optimization technique
to solve the daily imaging scheduling problem of
FORMOSAT-2. Based on the dual solution, a
greedy heuristic is developed with the help of
Lagrangian multipliers to re-allocate imaging
tasks to a feasible schedule. This greedy
heuristic is quick and easy to implement.
However, it could probably be trapped in a local
optimum. Intelligent search techniques such as
Tabu search can help escape from the local
optimal trap.

Tabu search [9] is a meta-heuristic designed
for tackling hard combinatorial optimization
problems. Contrary to random search
approaches such as simulated annealing where
randomness is extensively used, Tabu search is
based on intelligent searching to embrace more
systematic guidance of adaptive memory and
learning. Vasquez and Hao [7] introduced a
“logic constrained” knapsack formulation for a 
real world application, the photograph daily
imaging scheduling problem of the satellite



SPOT-5 [8], and developed a highly effective Tabu
search algorithm. Motivated by their researching
findings, Lin and Liao [9] developed a modified
Tabu search algorithm which integrated some
important ideas including a greedy-based
searching process, boundary extension by
constraint relaxation, a dynamic Tabu tenure
mechanism, intensification, and diversification to
make the searching effective and efficient on
solving the daily imaging scheduling problem of
FORMOSAT-2 (Figure3.1)(Table3.1).

Hybrid methods are promising tools in
mixed-integer programming (MIP), as they
combine the best features of different methods in a
complementary fashion. Examples of linear
mixed-integer programming problems include
manufacturing scheduling, transportation,
cargo-loading, and network routing problem.
Long computation time is usually needed to solve
these real-life complex scheduling problems.

In [9], Comparative results of 19 classes of 190
realistic daily imaging scheduling problems of
FORMOSAT-2 indicated that with the help of
exploration over diverse schedules, the Tabu
search algorithm was superior in optimality; on
the other hand, the Lagrangian relaxation
algorithm achieved near dual optimal and had an
advantage in computational efficiency (Table3.2).
Motivated by above observations, in this paper,
two hybrid schemes, CASCADE(Figure3.2) and
COMBINATION (Figure3.3), are further
developed to generate sound satellite imaging
schedules within allowable computation time.
CASCADE adopts Tabu search techniques to
improve the solution quality of Lagrangian
relaxation algorithm directly. COMBINATION
then deals with the development of Tabu
search-based feasibility adjustment heuristic in
Lagrangian relaxation algorithm. These hybrid
schemes are expected to exhibit the advantage of
providing not only good feasible solutions but also
a strong indication on the performance
improvement to optimal solution (Table3.3)
(Table3.4).
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Table 1.1 Simulation results by 10X4 case in SBPI
SBPI
Beta* 0.002 0.003 0.004 0.005 0.006
CPU
Time(Sec.)

207.2 115.22 75.42 51.52 50.36

Policy
Accuracy(%)

100 98 96 87 84

Beta* 0.007 0.008 0.009 0.01
CPU
Time(Sec.)

39.28 41.56 33.7 27.76

Policy
Accuracy(%)

79 74 70 62

Table 1.2 Simulation results by 10X4 case in SBVI
SBVI
Beta* 0.01 0.02 0.03 0.04 0.05
CPU
Time(Sec.)

4.95 1.14 0.47 0.27 0.17

Policy
Accuracy (%)

99 95 89 85 79

Beta* 0.06 0.07 0.08 0.09 0.1
CPU
Time(Sec.)

0.12 0.09 0.07 0.06 0.04

Policy
Accuracy (%)

70 63 63 61 60

Figure 1.5 Policy accuracy vs. estimation accuracy
Beta*



Figure 1.6 CPU Time vs. estimation accuracy
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Table 1.4 Simulation results by 10X4 case in
OOBVI

OOBVI
P* 0.95 0.9 0.85 0.8 0.75 0.7
CPU
Time(Sec.)

0.4 0.26 0.14 0.1 0.08 0.07

Policy
Accuracy(%)

100 96 95 94 92 84

0.65 0.6 0.55 0.5 0.45
0.07 0.06 0.06 0.06 0.06
77 65 62 51 47

Figure 1.8 Policy accuracy vs. P*

Figure 1.9 CPU Time vs. P*
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Table 2.1 Job Data for Experiment of an Auction

Process time
of bidder

Operation
cost of
bidder

Begin
date

Due
date

Earliness
penalty

Tardiness
penalty

Value Fine Extra
step
penalty

1 2 3 4 1 2 3 4

Job 1 1 4 3 3 8 10 1 5 5 4 4 3 3 2 3
Job 2 17 20 3 5 7 9 1 4 5 4 4 2 2 1 2
Job 3 3 12 5 3 9 10 1 6 6 6 6 2 2 2 2
Job 4 9 15 3 4 9 10 1 8 7 7 7 3 3 3 3
Job 5 1 4 3 6 8 9 1 4 5 4 4 2 2 4 2
Job 6 14 20 5 1 9 10 1 7 7 8 8 1 1 2 3
Job 7 5 12 4 4 8 9 1 8 9 8 8 2 2 3 2
Job 8 21 25 5 2 9 10 1 7 6 7 7 3 3 2 2
Job 9 5 12 2 3 10 11 1 7 8 7 7 2 2 2 3
Job 10 8 15 5 5 9 10 1 8 9 9 9 3 3 2 2
Job 11 31 35 4 4 8 10 1 3 4 3 3 4 4 2 1
Job 12 11 12 3 1 8 10 1 2 3 3 3 1 1 1 2
Job 13 12 13 3 3 8 9 1 3 3 2 2 2 2 1 2
Job 14 25 30 4 2 11 12 1 9 9 7 7 3 3 2 2
Job 15 14 15 3 1 9 10 1 3 4 3 3 2 2 1 2
Job 16 16 20 5 2 8 9 1 6 5 5 5 2 2 2 2
Job 17 23 28 3 1 10 11 1 8 9 9 9 4 4 2 1
Job 18 23 25 4 6 8 9 1 3 4 2 2 1 1 2 2
Job 19 22 27 5 1 10 11 1 7 9 8 8 1 1 2 3
Job 20 29 35 2 5 9 11 1 7 9 8 8 3 3 2 3
Job 21 1 8 4 3 8 10 1 9 8 8 8 6 6 3 4
Job 22 27 32 4 1 11 12 1 9 7 8 8 3 3 3 3
Job 23 16 20 3 1 10 11 1 9 10 8 8 6 6 3 1
Job 24 19 20 4 1 9 10 1 4 3 2 2 1 1 1 2
Job 25 1 4 3 5 8 9 1 3 3 4 4 2 2 2 2
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Figure. 3.1: A Projected Case of 5 Jobs and 9 Tasks in
100 Time Slots (Source: NSPO)
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Figure 3.2: The Framework of CASCADE
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Figure 3.3: The Framework of COMBINATION

TABLE 3.1:Data of 5 Jobs, 9 Tasks in 100 time Periods
for Strip Imaging

Two cloud coverage period: {[12, 14] and [72, 74]}
*: setup cost = 2.0ski

TABLE 3.2:Tabu Search vs. Lagrangian Relaxation for
Strip Imaging

*: Infeasible

Table 3.3 Parameters and Comparative Results of
Test Cases

Table 3.4:Optimality and CPU Time of Test Cases


