
行政院國家科學委員會專題研究計畫 成果報告

無限狀態系統之自動驗證(3/3)

計畫類別：個別型計畫

計畫編號： NSC93-2213-E-002-003-

執行期間： 93 年 08 月 01 日至 94 年 10 月 31 日

執行單位：國立臺灣大學電機工程學系暨研究所

計畫主持人：顏嗣鈞

計畫參與人員：林春成, 李宜益, 范家豪 , 張子璿 , 高浩仁

報告類型：完整報告

報告附件：出席國際會議研究心得報告及發表論文

處理方式：本計畫可公開查詢

中 華 民 國 95 年 1 月 30 日

無限狀態系統之自動驗證
2002.08.01 至 2005.10.31
主持人 顏嗣鈞 教授
國立臺灣大學電機工程學系

中文摘要:

在計算機科學的研究領域中，計算理論 (Theory of Computation) 具有相當悠久的
歷史。除了其本身深具困難度與挑戰性外，計算理論對於計算機科學的其他研究領

域分支，亦深具影響力。嚴格說來，計算理論提供了這些其他相關研究(compiler、
programming languages、pattern recognition、等等) 紮實的理論基礎以及分析工具。
隨著時間的演進，計算理論的研究重點也有所不同，從七、八零年代較著重於純理

論的研究(重點在automata theory、 formal languages、complexity theory、 等等) ，
演變到現今的潮流是將計算理論多年發展所累積的知識與技術，應用到real-world
problems 的解決上。這包括利用自動機理論 (automata theory)來協助電腦軟、硬
體系統的驗證(verification) ，利用 樹狀自動機 (tree automata)來提供XML 理論基
礎與其相關問題的分析描述⋯ 等等。

隨著電腦軟、硬體的複雜化，正規驗證與分析技術，近年來逐漸受到國際學術界與

工業界的重視。未來的工業產品，若不能運用自動化的分析技術來協助提升品質，

將很難保有競爭力。這個趨勢在工業界可以看到各種正規驗證技術的成功運用案

例，以及各種結合傳統與正規技術的廣泛運用；而功能驗證的技術更是大型EDA公司

（如Cadence與Synopsys）技術發展的重點。 傳統的驗證，侷限於有限狀態系統 
(finite-state systems)的驗證，但近幾年的研究重點，已漸漸導向各種無限狀態系統
 (infinite-state systems) 的驗證。

薄膜計算 (membrane computing)為分子計算 (molecular computing) 的一分
支， 為1998 Gh. Paun 所提出的另一類非傳統式計算模式  (nonstandard
computational model) 。 (其他非傳統式計算模式包括國科會目前所大力推動的量
子計算 (quantum computing)) 。 薄膜計算探討的計算模式，也是一類無限狀態
系統。

在此三年期研究計畫中， 主持人以計算理論為基礎，探討多類無限狀態系統的驗

證，獲得許多具體成果。在接下來的報告中，我們將對於研究成果逐一敘述。

1 Introduction

Automated verification has emerged as a fast growing research area from both theoretical

and practical viewpoints in the computer science and engineering community. As computer

software and hardware systems become more and more complicated, it is highly desirable

that such systems be verified and analyzed automatically. Simply speaking, automated ver-

ification refers to the process of given a system S and a property P , verifying whether the

behavior of system S satisfies property P algorithmically. Usually P and S are described

by some description languages. Models known to be useful for defining S include finite au-

tomata, timed automata, Petri nets, among others, and temporal logic is a useful language

to describe P . In contrast, the conventional method of testing (or simulation) analyzes a

system’s behaviors only with respect to a finite (and usually small) set of input samples. For

complex hardware/software systems, however, testing is capable of only revealing a small

portion of the possible behaviors of the system in a limited amount of time, which in turn,

does not guarantee error-freedom even when the test reports no abnormalities. Automated

verification, on the other hand, is to use rigorous mathematics and logical reasoning to ver-

ify whether a given system is completely free of errors under all circumstances. As one

might expect, automated verification is again a computation-intensive process, which re-

quires other than the so-called brute-force strategy in order for the method to be applicable

to real-world applications. (The increasing complexity exponentially associated with the

growth of a system size is known as the state explosion problem.) Over the past decade,

a tremendous advance in the research of automated verification has resulted in a number

of new and promising techniques capable of verifying systems up to 1020 states, and such

techniques have been successfully applied to real hardware elements (such as CPU), and

software protocols. It is expected that the trend (of applying automated verification to ver-

ifying real-world hardware/software systems) will continue, and more and more companies

will adopt automated verification as a standard procedure in the development phase of their

products.

Infinite-state systems are systems for which the number of system states is beyond any

1

fixed constant (i.e. infinite). The infinity could come from, for instance, unbounded data

structures and/or unbounded control structures involved in the system. The former includes

the models of timed automata, push-down automata, communicating finite-state machines,

and counter machines, for instance, whereas Petri nets and parameterized systems are ex-

amples of the latter.

Built upon the knowledge regarding the verification of finite state systems accumulated

in the past two decades, a great deal of research has been devoted to analyzing and verifying

infinite-state systems (see, e.g., [11, 12]) in recent years. The shift from ‘finite’ to ‘infinite-

state’ is also to reflect the nature of most systems in the real-world being ‘infinite,’ one way

or another.

P systems in membrane computing are another model of infinite systems that have at-

tracted much attention recently. There has been a flurry of research activities in the area of

membrane computing (a branch of molecular computing) initiated five years ago by Gheorghe

Paun [29]. Membrane computing identifies an unconventional computing model, namely a P

system, from natural phenomena of cell evolutions and chemical reactions. Due to the built-

in nature of maximal parallelism inherent in the model, P systems have a great potential

for implementing massively concurrent systems in an efficient way that would allow us to

solve currently intractable problems (in much the same way as the promise of quantum and

DNA computing) once future bio-technology (or silicon-technology) gives way to a practical

bio-realization (or chip-realization).

The Institute for Scientific Information (ISI) has recently selected membrane computing

as a fast “Emerging Research Front” in Computer Science

(http://esi-topics.com/erf/october2003.html). A P system is a computing model, which ab-

stracts from the way the living cells process chemical compounds in their compartmental

structure. Thus, regions defined by a membrane structure contain objects that evolve accord-

ing to given rules. The objects can be described by symbols or by strings of symbols, in such

a way that multisets of objects are placed in regions of the membrane structure. The mem-

branes themselves are organized as a Venn diagram or a tree structure where one membrane

2

may contain other membranes. By using the rules in a nondeterministic, maximally parallel

manner, transitions between the system configurations can be obtained. A sequence of tran-

sitions shows how the system is evolving. Various ways of controlling the transfer of objects

from a region to another and applying the rules, as well as possibilities to dissolve, divide or

create membranes have been studied. P systems were introduced with the goal to abstract a

new computing model from the structure and the functioning of the living cell (as a branch

of the general effort of Natural Computing – to explore new models, ideas, paradigms from

the way nature computes). Membrane computing has been quite successful: many models

have been introduced, most of them Turing complete and/or able to solve computationally

intractable problems (NP-complete, PSPACE-complete) in a feasible time (polynomial), by

trading space for time. (See the P system website at http://psystems.disco.unimib.it for a

large collection of papers in the area, and in particular the monograph [30].)

Our investigation in the three years of this research project has led to the following

publications:

1. H. Yen and L. Yu, Decidability Analysis of Self-Stabilization for Infinite State Systems,

Fundamenta Informaticae, Vol. 70, No. 4, 387-402, 2006.

2. F. Wang and H. Yen, Reachability Solution Characterization of Parametric Real-time

Systems, Theoretical Computer Science, Vol. 328 , pp. 187-201, 2004.

3. H. Yen, and L. Yu, Petri Nets with Simple Circuits, in the Proceedings of the Ninth

International Computing and Combinatorics Conference, (COCOON 2003) (LNCS

2697), pp. 149-158, July 25-28, 2003, Big Sky, MT, USA.

4. H. Yen and L. Yu, Dependability Analysis of a Class of Probabilistic Petri Nets, in

Proc. of 10th IEEE Pacific Rim Int’l Symp. on Dependable Computing, (PRDC 2004)

pp. 373-382, March 3-5, 2004, Tahiti, French Polynesia.

5. C. Chen, T. Lin, and H. Yen, Modelling and Analysis of Asynchronous Circuits and

Timing Diagrams Using Parametric Timed Automata, in Proc. of the 23rd IASTED

3

Int’l Conf. on Modelling, Identification and Control (MIC 2004), February 23-25,

2004 Grindelwald, Switzerland.

6. O. Ibarra, H. Yen, and Z. Dang, On Various Notions of Parallelism in P Systems,

International Journal of Foundations of Computer Science, Vol. 16, No. 4, pp. 683-

706, August 2005.

7. O. Ibarra, and H. Yen, On Deterministic Catalytic Systems, in Proc. of the 10th Inter-

national Conference on Implementation and Application of Automata (CIAA 2005),

(LNCS 3845), June 27V29, 2005, Sophia Antipolis, France.

8. C. Li, Z. Dang, O. Ibarra, and H. Yen, Signaling P Systems and Verification Prob-

lems, in Proc. of the 32nd International Colloquium on Automata, Languages and

Programming (ICALP’05), (LNCS 3580), pp. 1462-1473, July 11-15, 2005, Lisboa,

Portugal.

9. O. Ibarra, S. Woodworth, H. Yen and Z. Dang, On Sequential and 1-Deterministic P

Systems, in Proc. of the 11th International Computing and Combinatorics Conference

(COCOON 2005), (LNCS 3595) , August 16 - 19, Kunming, Yunnan, China.

10. O. Ibarra, S. Woodworth H. Yen, and Z. Dang, On Symport/Antiport Systems and

Semilinear Sets, in Proc. of the 6th International Workshop on Membrane Computing

(WMC6) , (LNCS 3850), July 18 - 21, 2005, Vienna, Austria.

In what follows, we summarize what we have accomplished during the course of this

project in greater detail.

2 Research results

• Decidability Analysis of Self-Stabilization for Infinite State Systems (by H. Yen

and L. Yu) Fundamenta Informaticae, Vol. 70, No. 4, 387-402, 2006.

4

The notion of self-stabilization was introduced by Dijkstra [10] to describe a system

having the behavior that regardless of its starting configuration, the system would return to a

‘legitimate’ configuration eventually (by a legitimate configuration, we mean a configuration

which is reachable from the initial configuration of the system). The motivation behind

self-stabilization is that a self-stabilizing system has the ability to ‘correct’ itself even in

the presence of certain unpredictable errors that force the system to reach an ‘illegitimate’

configuration during the course of its operations. In this sense, self-stabilizing systems exhibit

fault-tolerant behaviors to a certain degree. With the increased interest in designing fault-

tolerant systems, the study of self-stabilization has been gaining increasing popularity in the

computer science community lately. In what follows, we briefly review some of the previous

work done in the area of self-stabilization.

Following the seminal work of Dijkstra [10], the majority of research along the line of self-

stabilization has been focusing on providing solutions (and their proofs) for self-stabilizing

systems with a variety of properties and topologies (see [19] for a bibliography of self-

stabilization). In a somewhat different direction of research, Gouda, Howell and Rosier

([17]) have showed that the property of self-stabilization is ‘unstable’ across a wide variety

of system classes, ranging from cellular automata, Turing machines, communicating finite

state machines, to Petri nets. They basically demonstrated that the simulation paradigm,

which is a useful tool for designing and analyzing systems, may not be ‘robust’ with re-

spect to the property of self-stabilization. The simulation paradigm, simply speaking, is a

methodology routinely used for designing or analyzing one class of systems with the help of

another (hopefully, a well-studied one) through the simulation of the former by the latter.

In this manner, properties of the former can be deduced from the respective properties of

the latter. Unlike traditional properties such as liveness, boundedness and fairness which are

almost always preserved under standard simulations, self-stabilization could easily be lost

through the process of simulation from one class of systems to another (for more details, see

[17]). To our knowledge, [17] also pioneers the introduction of the notion of self-stabilization

to the model of Petri nets. In a subsequent paper [9], specific efforts have been devoted to

5

reasoning about self-stabilization aspects of Petri nets from the computational complexity

point of view. Among those complexity results derived in [9], detecting whether a Petri net

is self-stabilizing is complete for polynomial time for bounded ordinary Petri nets, whereas

it is PSPACE-complete for bounded general Petri nets.

As far as we know, very little is known regarding the complexity of the self-stabilization

problem (i.e., the problem of deciding whether a system is self-stabilizing or not) for infinite-

state systems. At this moment, the best bounds of the problem for general Petri nets are

a lower bound of exponential space and an upper bound of Π2 (the second level of the

arithmetic hierarchy), whereas it is Π2-complete for Turing machines [9]. Therefore, it is of

interest and importance to take a closer look at the problem for other infinite-state systems, in

the hope of recognizing the key characteristics which govern the decidability/undecidability

nature of the problem. An equally important goal is to, perhaps, come up with a unified

framework through which decidability/undecidability of self-stabilization can be obtained.

In this paper, we extend the work of [9] by investigating, from the decidability viewpoint,

the problem of deciding whether a given system is self-stabilizing for a wide range of infinite-

state systems, including lossy vector addition systems with states, one-counter machines,

conflict-free Petri nets, lossy counter machines, and lossy channel systems. As it turns out,

the decidability of self-stabilization for lossy vector addition systems with states, one-counter

machines, and conflict-free Petri nets can be established in a unified setting, taking advantage

of the existence of a periodic witness for non-self-stabilizing infinite computations. For lossy

counter machines and lossy channel systems, however, the self-stabilization problem turns

out to be undecidable.

• Reachability Solution Characterization of Parametric Real-time Systems (by F.

Wang and H. Yen) Theoretical Computer Science, Vol. 328 , pp. 187-201, 2004.

Timed automata have been a popular model in the research of formal description and

verification of real-time systems [2]. In real-world applications, systems are usually described

6

with unknown parameters to be analyzed. Here we use the term timing parameters to refer to

those parameters which are compared with clocks in either timed automata [3] or parametric

TCTL formulae [36, 37, 38]. A timed automaton extended with unknown timing parameters

is called a timing parameter automaton (TPA). A valuation of unknown parameters making

the goal state reachable in a TPA is called a solution. In this paper, we are mainly concerned

with the following problem:

The reachability solution characterization (RSC) problem: Given a TPA A and a goal

predicate η, formulate a representation for the solution space of A with respect to η.

By ‘formulating a representation’ we mean finding a proper characterization for the solution

space so as to allow queries arisen frequently in verification (such as emptiness, membership,

etc) to be answered effectively.

In [3], it has been shown that the emptiness problem (i.e., the problem of deciding

whether there exists a parameter valuation under which the associated timed language is

nonempty) becomes undecidable when three or more clocks are compared with unknown

parameters in TPAs. Knowing such a limitation, a line of subsequent research has been

focused on the RSC problem for a number of restricted versions of TPAs. These positive

results obtained in the last few years have all been focused on unknown timing parameters in

the specification of logic formulae. But in practice, it is more likely that design engineers will

use unknown parameters in the system behaviour descriptions. Moreover, design engineers

will be more interested in knowing the condition for solution parameters valuations than in

knowing whether there exists a solution parameter valuation. In this work, we identify three

subclasses of TPAs and investigate the complexity issue of their RSC problems. The three

subclasses are called upper-bound TPAs, lower-bound TPAs, and bipartite TPAs. Consider

a TPA and w.l.o.g., we assume that only ≤ and < are used in the predicates of the TPA.

An upper-bound parameter θ is one that only appears to the right of an inequality operator

(e.g., x < θ, x ≤ θ), whereas a lower-bound parameter θ appears to the left of an inequality

operator (e.g., θ < x, θ ≤ x). Upper-bound (resp. lower-bound) TPAs are those whose

unknown parameters are all upper-bound (resp. lower-bound) parameters. Bipartite TPAs

7

refer to those for which every unknown parameter is either a lower-bound parameter or an

upper-bound parameter, but not both. Bipartite TPAs were considered in a recent article

[20] in which the emptiness problem (undecidable for general TPA [3]) was shown to be

decidable for such automata. In our setting, unknown parameters range over the set of

natural numbers. As the work of [1] shows, unknown parameters of integer values can be

used for modelling, for instance, the maximal number of retransmissions in the Bounded

Retransmission Protocol (BRP), which is a data link protocol used by Philips.

Intuitively, what makes upper-bound (resp. lower-bound) TPAs easier to analyze, in

comparison with their general counterparts, lies in the fact that for each of such TPAs,

the solution space is upward-closed (resp. downward-closed). (A set S over k-dimensional

vectors of natural numbers, for some k, is called upward-closed (resp., downward-closed) if

∀u ∈ S, v ≥ u =⇒ v ∈ S (resp., ∀u ∈ S, v ≤ u =⇒ v ∈ S)). It is well known that an

upward-closed set (resp., downward-closed set) is completely characterized by its minimal

(resp., maximal) elements, which always form a finite set although the set might not be

effectively computable in general. As we shall see later in this paper, we are able to give

a complexity bound for the sizes of the minimal elements for a given upper-bound TPA.

Our analysis is carried out in a way similar to a strategy proposed in [35] (by Valk and

Jantzen), in which a sufficient and necessary condition was derived under which the set of

minimal elements of an upward-closed set is guaranteed to be effectively computable. (Note,

however, that [35] reveals no complexity bounds for the sizes of the minimal elements.)

Taking advantage of certain properties offered by timed automata, we are able to refine Valk

and Jantzen’s approach to yield complexity bounds for the sizes of the minimal elements

for the upward-closed sets associated with upper-bound TPAs, allowing us to characterize

their solution spaces. This in turn answers the RSC problem for upper-bound TPAs. To

a certain extent, our result supplements the work of [20] (in which the emptiness problem

was shown to be decidable for bipartite TPAs) by tackling a more general problem. We

are also able to extend our analysis to the model of upper-bound timing parameter vector

addition systems with states (TPVASSs), each of which can be viewed as a TPA equipped

8

with counters without zero-test capabilities. Once the sizes of minimal elements become

available, finding all such elements can be done by exhaustive search using the region graph

technique, although it would clearly be interesting to develop smarter (and more efficient)

algorithms. Some complexity results are also derived for lower-bound TPAs. For bipartite

TPAs, we are able to show that their solution spaces are not semilinear in general, in spite

of the fact that the emptiness problem is decidable [20].

We feel that the method developed in this paper for analyzing upward-closed sets is

interesting in its own right. Our strategy provides a refinement over the approach proposed

in [35] in the sense that the sizes of the minimal elements can now be deduced, provided

that certain conditions are met. It would be interesting to seek additional applications of

our technique.

• Petri Nets with Simple Circuits (by H. Yen, and L. Yu) in the Proceedings of the

Ninth International Computing and Combinatorics Conference, (COCOON 2003) (LNCS

2697), pp. 149-158, July 25-28, 2003, Big Sky, MT, USA.

Petri nets (PNs, for short) have been a popular model for reasoning about the behaviors

of concurrent systems [32]. The reachability problem is among the most important problems

in the study of PNs. Reachability analysis is key to the solutions of such PN problems

as liveness, fairness, controllability, model checking and more. In addition, identifying a

tight complexity bound for the reachability problem of PNs remains a great challenge in the

community of theoretical computer science. Although known to be decidable, the existing

algorithms for the problem is still not even primitive recursive [26] (see also [23]), while the

problem is also known to be exponential space hard [24].

Integer linear programming (ILP, for short) has long been a useful tool for the reachability

analysis of PNs. It is well known that in a PN P with initial marking µ0, a marking µ

is reachable from µ0 only if there exists a column vector x such that the state equation

µ0 + A · x = µ holds, where A is the addition matrix of P . Although the converse does not

9

necessarily hold, there are restricted classes of PNs for which the state equation is sufficient

and necessary to capture reachability. Most notable is the class of circuit-free PNs (i.e.,

Petri nets without circuits) as well as the class of PNs without token-free circuits in every

reachable marking [39]. (A circuit of a Petri net is simply a closed path (i.e., a cycle) in the

Petri net graph.) Other subclasses for which reachability has been thoroughly studied and

solved are conflict-free, normal [21, 39], sinkless [21, 39], BPP-net [42], trap-circuit [22, 41],

and extended trap-circuit PN [41] to name a few. For each of them, deciding reachability

can be equated with solving an ILP problem. A question arises: Can we enlarge the PN

class while still retaining the desirable property of reachability being characterizable by ILP?

Affirmative answer to this question is one of the contributions of this paper.

Circuits in BPP-nets are referred to as ⊕-circuits (a simple type of circuit where every

transition having exactly one input place, and the firing of transition removing exactly one

token from it’s sole input place). In normal PNs, no transition is capable of decreasing

the token count of a minimal circuit, and such circuits are called ¯-circuits. (A circuit is

minimal iff the set of places in it does not properly include that in any other circuit.) Our

new PN class, called simple-circuit Petri nets (sc-PNs, for short), consists of those in which

each minimal circuit is either a ¯-circuit, or a ⊕-circuit which is not properly included in

any non-⊕-circuit. By relaxing the constraints on circuits, our sc-PNs properly contain that

of conflict-free, normal, trap-circuit, extended trap-circuit, and BPP-nets.

To analyze sc-PNs, the technique of the so-called decomposition approach is used. Given

a computation σ of a PN, the basic idea is to rearrange σ into some canonical form σ1σ2 · · ·σn

with each of them being of some ‘simpler form’. By a ‘simpler form’ we mean the sub-PN

induced by each of the segments has its reachability set characterizable by certain well-

understood and easily solvable formulations, such as ILP. For cases, we can also place a

bound on the number of segments in the above canonical computation. Demonstrating the

applicability of the decomposition approach to sc-PNs is another contribution of our work.

It is worth noting that our analysis yields an ILP formulation for the reachability problem

in which the initial and final markings are regarded as parameters, as opposed to being

10

constants as in many of the traditional reachability analysis of PNs. The complexity of

model checking with respect to a number of temporal logics is also investigated.

It is known that the class of marked graphs, in spite of its simplicity, has found important

applications in various areas, including specification and verification of asynchronous circuits,

supervisory control, among others. BPP-nets are closely related to the model of Basic Parallel

Processes, which is an important branch of Process Algebra. As for normal Petri nets, a

recent article shows an interesting application in AI planning. Although our study of simple-

circuit Petri nets in this paper is primarily from a theoretical viewpoint, properly containing

several well-known classes (such as marked graphs, BPP-nets, and normal Petri nets) makes

this new class of Petri nets appealing as far as enhancing the expressive power while keeping

the analytical complexity manageable is concerned. Seeking additional applications of this

new Petri net class is among one of our future research topics.

• Dependability Analysis of a Class of Probabilistic Petri Nets (by H. Yen and

L. Yu) in Proc. of 10th IEEE Pacific Rim Int’l Symp. on Dependable Computing, (PRDC

2004) pp. 373-382, March 3-5, 2004, Tahiti, French Polynesia.

As modern hardware and software systems are becoming more complex and at the same

time required to be more dependable, there is an ever-increasing need for new evaluation

techniques; the advantage of analytical evaluation over experimental one lies in its usefulness

in abstracting the essentials of systems (so that various levels of system details can be ab-

stracted out) and analyzing or predicting system behaviors (especially while a system is being

designed or implemented), and its being generally far more cost effective than its experiment-

based counterpart. With the increasing interest in developing dependable systems, the study

of problems regarding termination, controllability, and self-stabilization, among others, has

also been gaining increasing popularity in the computer science community due to the follow-

ing reasons. Dependable systems are often associated with properties like safety (‘something

bad never happens’), liveness (‘something good eventually happens’), fault-tolerance (error

detection, recovery and masking), etc. The safety property requires that undesired or failure

11

states be avoided at all times during the course of a computation. The liveness property as-

serts that a certain desired condition be true eventually. The notion of self-stabilization was

introduced by Dijkstra [10] to describe a system having the behavior that regardless of its

starting configuration, the computation is guaranteed to return to a legitimate configuration

eventually. By a legitimate configuration we mean a configuration reachable from its initial

configuration. Since a self-stabilizing system has the ability to ‘correct’ itself even in the

presence of certain unpredictable errors leading itself to an illegitimate configuration, one

can assert that a self-stabilizing system is, in a sense, fault-tolerant.

In view of the above, it becomes apparent that automatic verification of various properties

associated with concurrent/distributed systems is critical in the process of designing and

analyzing dependable systems. While techniques for the automatic verification of finite-state

systems are relatively well studied, one of the main challenges in the domain of verification is

concerned with the development of new techniques capable of coping with problems beyond

the finite state framework.

The aim of this paper focuses on investigating the following problem. Given an infinite-

state system, determine whether the system meets certain criteria (termination, control-

lability, and self-stabilization) frequently required in dependable computing environments.

Taking into consideration that many real-world systems are nondeterministic (or stochastic,

to be more precise) in nature, the system model under our investigation is not only infinite-

state but also probabilistic, allowing us to ask questions such as ‘something happens with

probability 1’, for instance. The systems under investigation are modelled as Petri nets,

which have been regarded as one of the most successful models for describing the behaviors

of systems of concurrent nature. In spite of their popularity, the high expressive power of

Petri nets renders most of the nontrivial problems for this model highly intractable or even

unsolvable. As a result, it is of interest from the theoretical and practical viewpoints to

investigate problems with respect to restricted (either structurally or behaviorally) versions

of Petri nets, in hope of making simpler solutions feasible and well as gaining more insights

into the factors that make general Petri nets difficult to analyze.

12

A Petri net is conflict-free if every place which is an input of more than one transition is

on a self-loop with each such transition [25]; therefore, once a transition becomes enabled,

the only way to disable it is to fire the transition itself.

Probabilistic techniques, capable of modelling unreliable or unpredictable behaviors of

systems, are extensively used in the analysis of the performance and dependability of hard-

ware and software systems. In this paper, we consider a probabilistic version of conflict-free

Petri nets, in which each marking (i.e., configuration) is associated with a transition prob-

ability function characterizing the firing of each enabled transition. We investigate through

a technique recently developed in [40] (called the valuation method) a number of important

dependability-related problems, including termination with probability 1, self-stabilization

with probability 1, and controllability with probability 1, etc. The idea of the valuation-based

approach for Petri nets is to associate a valuation in {0, 1, 2, ...∞} with each marking, and if

the set of markings of zero valuation is forward-closed, then the valuation along any compu-

tation is non-increasing, and in many cases, has the tendency to move towards the ground

level (i.e., valuation zero) of which the marking sometimes constitute the set of states of

interest, e.g., the termination set.

The main contribution of this paper lies in the development of a unified approach (ex-

tending of the work of [40]) for reasoning about various dependability-related problems for

probabilistic conflict-free Petri nets. In addition to the results themselves, we feel that the

valuation-based approach for the analysis of probabilistic conflict-free Petri net is also inter-

esting in its own right, and may have other applications to the analysis of other probabilistic

Petri net models.

• Modelling and Analysis of Asynchronous Circuits and Timing Diagrams Using

Parametric Timed Automata (by C. Chen, T. Lin, and H. Yen) in Proc. of the 23rd

IASTED Int’l Conf. on Modelling, Identification and Control (MIC 2004), February 23-25,

2004 Grindelwald, Switzerland.

When designers do circuit design, they usually use some informal notations or diagrams

13

such as circuit diagrams, ASM charts, and timing diagrams in practice. To take advantage of

existing verification tools to verify the design, one has to transform these informal diagrams

into some formal models, for which formal verification techniques (such as model checking)

are available. In asynchronous circuit design, the intended behaviors of asynchronous circuits

are commonly specified using signal transition graphs (STG), which are essentially Petri

nets whose transitions are labelled by events corresponding to rising and falling of signals. A

STG could be transformed into an equivalent automaton (state graph). Once a state graph is

given, it is easy to draw the corresponding Karnaugh map and derive the next-state function.

In the process of doing so, decomposition is involved which may lead to hazards; as a result,

when deriving the decomposed functions, we must try to avoid the occurrence of hazards,

which is a tedious procedure. For an asynchronous circuit in which the delays of all the

constituent components are known, the behaviors of such a circuit can be modelled using a

timed automaton, and consequently the correctness of the circuit (such as whether the design

is hazard-free) can be deducted by, for instance, model-checking the timed automaton. In

practice, however, one might be more interested in the following question: ‘Under what

delay constraints will the circuit still behave correctly?’ Clearly it is not feasible to try all

the possibilities of delay constraints since the number of such constraints to be tested is in

general infinite. To overcome this difficulty, we propose the use of parametric timed automata

(PTA) which are basically timed automata augmented by unknown parameters. And the

question boils down to finding some (or all) valuations of the unknown parameters that

ensure correctness of the modelled circuit, if the solution space is not empty. In theory,

such a problem for PTAs is undecidable in general; however, there are certain subclasses of

PTAs for which their solution spaces are simpler, and many analytical problems are indeed

decidable.

In our setting, the lower and upper bounds of delays in asynchronous circuits can be

parameters. We model the delays of each gate using parametric timed automata. The in-

put signals can also be modelled as timed automata to express the timing bounds on their

frequency or some other protocols they assumed to follow. We can simulate all the possible

14

behaviors of the circuits including all choice of delays by combining these timed automata.

An STG represents a protocol of interaction between a component and its environment. The

produced circuits must follow this protocol. The STG’s specification could be transformed

into an automaton with error transitions. By adding error transitions for all output events,

one can be ensured that if error transitions enable, the computation will not go to a legal

state. So the verification problem is: With what delay bounds the set of behaviors of the

circuits will contain a behavior not included in the semantics of the STG? In other words,

the problem is to decide under what delay bounds is the error state reachable in the compo-

sition of all the above mentioned automata. To answer this question, we apply the forward

reachability algorithm for parametric timed automata. The reachability problem of para-

metric timed automata is undecidable but the same problem is decidable in L/U automata, a

subclass of parametric time automata. The bi-bounded delay model under our consideration

is just an L/U automaton because the lower bounds of delays always occur negatively; on

the contrary, the upper bounds of delays occur positively. There are no timing parameters

other than the lower bounds and upper bounds and it makes our delay model surely a L/U

automaton. As a result, the reachability problem of our delay model is decidable.

The second informal model considered in this work is the model of the so-called timing

diagrams, which are convenient but informal diagrams for hardware and protocol design. K.

Fisler [13] and N. Amla [4] both have introduced the approaches for model checking timing

diagrams; Fisler [13] gave a formal definition of timing diagrams in her dissertation. Tim-

ing diagrams depict the temporal behaviors between signals including the patterns of value

changes on signals, precedence relationships with timing constraints, and synchronization.

Fisler also defined two kinds of semantics of timing diagrams for verification. Invariant se-

mantics is suited to formal verification and the timing diagram patterns are required to hold

in all times. Iterative semantics represents cycles of behaviors and the entire timing diagram

is viewed as behaviors that must be guaranteed repeatedly. For efficient model checking,

Amla et al. [4] introduced a class of timing diagram, regular timing diagram (RTD). Amla

15

et al. defined the semantics of regular timing diagram in a reformulation of the iterative

semantics. They permit timing diagrams to be satisfied in an overlapping manner. For

simplicity, we do not allow unspecified signal values.

Fisler [13] has proved that containment of regular languages in non-regular timing dia-

gram languages is decidable. Although this result is helpful to check whether the regular

language generated by a system is contained by the specification expressed in non-regular

timing diagram; the containment testing lies in PSPACE. Amla et al. [4] defined a subclass of

timing diagram, regular timing diagram, and introduced an efficient decompositional model

checking method for it. They used ∀-automata (”dual-run” automata) to provide an efficient

emptiness checking method which the time complexity is a small polynomial in the sizes of

RTD and the space complexity is logarithmic in the sizes of both the system and RTD. But

because of the non-decidability, they all did not consider the timing diagram with parameters

in timing constraints which could be useful for designers in practice.

To extend the ability of timing diagrams, we allow parameters to occur in the timing

bounds on timing diagrams. We transform RTD into PTA and perform the reachability

algorithm; moreover, after the transformation of the specification represented by RTD, we

perform model checking methods on systems represented by automata to check the reason-

ability of the specification. This gives us an approach to tune our specification and make it

more reasonable.

•On Various Notions of Parallelism in P Systems (by O. Ibarra, H. Yen, and Z. Dang)

International Journal of Foundations of Computer Science, Vol. 16, No. 4, pp. 683-706,

August 2005.

In the standard semantics of P systems [29, 30], each evolution step of a system G is a

result of applying all the rules in G in a maximally parallel manner. More precisely, starting

from the initial configuration, w, the system goes through a sequence of configurations, where

each configuration is derived from the directly preceding configuration in one step by the

16

application of a multi-set of rules, which are chosen nondeterministically. For example, a

catalytic rule Ca → Cv in membrane q is applicable if there is a catalyst C and an object

(symbol) a in the preceding configuration in membrane q. The result of applying this rule is

the evolution of v from a. If there is another occurrence of C and another occurrence of a,

then the same rule or another rule with Ca on the left hand side can be applied. Thus, in

general, the number of times a particular rule is applied at anyone step can be unbounded.

We require that the application of the rules is maximal: all objects, from all membranes,

which can be the subject of local evolution rules have to evolve simultaneously. Configuration

z is reachable (from the starting configuration) if it appears in some execution sequence; z

is halting if no rule is applicable on z.

In this paper, we study a different definition of maximal parallelism. Let G be a P system

and R = {r1, ..., rk} be the set of (distinct) rules in all the membranes. (Note that ri uniquely

specifies the membrane the rule belongs to.) We say that G operates in maximal parallel

mode if at each step of the computation, a maximal subset of R is applied, and at most one

instance of any rule is used at every step (thus at most k rules are applicable at any step).

For example, if ri is a catalytic rule Ca → Cv in membrane q and the current configuration

has two C’s and three a’s in membrane q, then only one a can evolve into v. Of course,

if there is another rule rj, Ca → Cv′, in membrane q, then the other a also evolves into

v′. Throughout the paper, we will use this definition of maximal parallelism. Here, we look

at the computing power of P systems under three semantics of parallelism. For a positive

integer n ≤ k, define:

n-Max-Parallel: At each step, nondeterministically select a maximal subset of at most

n rules in R to apply (this implies that no larger subset is applicable).

≤ n-Parallel: At each step, nondeterministically select any subset of at most n rules in

R to apply.

n-Parallel: At each step, nondeterministically select any subset of exactly n rules in R

to apply.

In all three cases, if any rule in the subset selected is not applicable, then the whole subset

17

is not applicable. When n = 1, the three semantics reduce to the Sequential mode.

• On Deterministic Catalytic Systems (by O. Ibarra, and H. Yen) in Proc. of the 10th

International Conference on Implementation and Application of Automata (CIAA 2005),

(LNCS 3845), June 27V29, 2005, Sophia Antipolis, France.

There has been a great deal of research activities in the area of membrane computing

(a branch of natural computing) initiated by Gheorghe Păun in a seminal paper [28] over

six years ago (see also [29]). Membrane computing identifies an unconventional comput-

ing model, namely a P system, from natural phenomena of cell evolutions and chemical

reactions. Due to the built-in nature of maximal parallelism inherent in the model, P sys-

tems have a great potential for implementing massively parallel systems in an efficient way

that would allow us to solve currently intractable problems once future bio-technology (or

silicon-technology) gives way to a practical bio-realization (or chip-realization).

A P system is a computing model, which abstracts from the way the living cells process

chemical compounds in their compartmental structure. Thus, regions defined by a membrane

structure contain objects that evolve according to given rules. The objects can be described

by symbols or by strings of symbols, in such a way that multisets of objects are placed

in regions of the membrane structure. The membranes themselves are organized as a tree

structure (this can be represented by a Venn diagram) where one membrane may contain

other membranes. By using the rules in a nondeterministic, maximally parallel manner,

transitions between the system configurations can be obtained. A sequence of transitions

shows how the system is evolving. Various ways of controlling the transfer of objects from a

region to another and applying the rules, as well as possibilities to dissolve, divide or create

membranes have been studied. P systems were introduced with the goal to abstract a new

computing model from the structure and the functioning of the living cell (as a branch of

the general effort of Natural Computing – to explore new models, ideas, paradigms from

the way nature computes). Membrane computing has been quite successful: many models

have been introduced, most of them Turing complete and/or able to solve computationally

18

intractable problems (NP-complete, PSPACE-complete) in a feasible time (polynomial), by

trading space for time. (See the P system website at http://psystems.disco.unimib/it for a

large collection of papers in the area, and in particular the monograph [30].)

In the standard semantics of P systems [29, 30], each evolution step of a system P is a

result of applying all the rules in P in a maximally parallel manner. More precisely, starting

from the initial configuration, w, the system goes through a sequence of configurations, where

each configuration is derived from the directly preceding configuration in one step by the

application of a multiset of rules, which are chosen nondeterministically. For example, a

catalytic rule Ca → Cv in membrane m is applicable if there is a catalyst C and an object

(symbol) a in the preceding configuration in membrane m. The result of applying this rule

is the evolution of v from a. If there is another occurrence of C and another occurrence of

a, then the same rule or another rule with Ca on the left hand side can be applied. Thus, in

general, the number of times a particular rule is applied at anyone step can be unbounded.

We require that the application of the rules is maximal: all objects, from all membranes,

which can be the subject of local evolution rules have to evolve simultaneously. Configuration

z is reachable (from the starting configuration) if it appears in some execution sequence; z

is halting if no rule is applicable on z.

Two popular models of P systems are the catalytic system [29] and the symport/antiport

system [31]. An interesting subclass of the latter was studied in [14] – each system is de-

terministic in the sense that the computation path of the system is unique, i.e., at each

step of the computation, the maximal multiset of rules that is applicable is unique. It

was shown in [14] that any recursively enumerable unary language L ⊆ o∗ can be accepted

by a deterministic 1-membrane symport/antiport system. Thus, for symport/antiport sys-

tems, the deterministic and nondeterministic versions are equivalent and they are universal.

It also follows from the construction in [33] that for another model of P systems, called

communicating P systems, the deterministic and nondeterministic versions are equivalent

as both can accept any unary recursively enumerable language. However, the deterministic-

versus-nondeterministic question was left open in [14] for the class of catalytic systems (these

19

systems have rules of the form Ca → Cv or a → v), where the proofs of universality involve

a high degree of parallelism [33, 15]. We answer this question negatively in this paper. Since

nondeterministic catalytic systems are universal, our result also gives the first example of a

variant of P systems for which the nondeterministic version is universal, but the deterministic

version is not.

For a catalytic system serving as a language acceptor, the system starts with an initial

configuration wz, where w is a fixed string of catalysts and noncatalysts not containing any

symbol in z, and z = an1
1 ...ank

k for some nonnegative integers n1, ..., nk, with {a1, ..., ak} a

distinguished subset of noncatalyst symbols (the input alphabet). At each step, a maximal

multiset of rules are nondeterministically selected and applied in parallel to the current

configuration to derive the next configuration (note that the next configuration is not unique,

in general). The string z is accepted if the system eventually halts. Unlike nondeterministic

1-membrane catalytic system acceptors (with 2 catalysts) which are universal, we are able

to show using a graph-theoretic approach that the Parikh map of the language (⊆ a∗1...a
∗
k)

accepted by any deterministic catalytic system is a simple semilinear set which can also be

effectively constructed. For deterministic 1-membrane catalytic systems using only rules of

type Ca → Cv, we show the set of reachable configurations from a given initial configuration

to be effective semilinear. In contrast, the reachability set is no longer semilinear in general

if rules of type a → v are also used. Our result generalizes to multi-membrane catalytic

systems.

We also consider deterministic catalytic systems which allow rules to be prioritized. Three

such systems, namely, statically prioritized, strongly prioritized and weakly prioritized cat-

alytic systems, are investigated. For statically prioritized systems, rules are divided into

different priority groups, and if a rule in a higher priority group is applicable, then no rules

from a lower priority group can be used. For both strongly prioritized and weakly prioritized

systems, the underlying priority relation is a strict partial order (i.e., irreflexive, asymmetric,

and transitive). Under the semantics of strong priority, if a rule with higher priority is used,

then no rule of a lower priority can be used even if the two rules do not compete for objects.

20

This notion of strong priority coincides with the semantics of the priority relation used in

[29]. For weakly prioritized systems, a rule is applicable if it cannot be replaced by a higher

priority one. For these three prioritized systems, we obtain contrasting results by showing

that deterministic strongly and weakly prioritized catalytic systems are universal, whereas

statically prioritized systems only accept semilinear sets.

• Signaling P Systems and Verification Problems (by C. Li, Z. Dang, O. Ibarra,

and H. Yen) in Proc. of the 32nd International Colloquium on Automata, Languages and

Programming (ICALP’05), (LNCS 3580), pp. 1462-1473, July 11-15, 2005, Lisboa, Portugal.

P systems [29, 30] are abstracted from the way the living cells process chemical compounds

in their compartmental structure. A P system consists of a finite number of membranes,

each of which contains a multiset of objects (symbols). The membranes are organized as a

Venn diagram or a tree structure where a membrane may contain other membranes. The

dynamics of the P system is governed by a set of rules associated with each membrane.

Each rule specifies how objects evolve and move into neighboring membranes. In particular,

a key feature of the model of P systems is that rules are applied in a nondeterministic

and maximally parallel manner. Despite the short (only five years) history of membrane

computing, there has already been a notably large collection of papers in the area (see the

P systems website: psystems.disco.unimb/it) and membrane computing has been selected

as a fast “Emerging Research Front” in Computer Science by the Institute for Scientific

Information (ISI) (esi-topics.com/erf/october2003.html). Due to the key feature inherent in

the model, P systems have a great potential for implementing massively concurrent systems

in an efficient way that would allow us to solve currently intractable problems (in much the

same way as the promise of quantum and DNA computing). It turns out that P systems

are a powerful model: even with only one membrane (i.e., 1-region P systems) and without

priority rules, P systems are already universal [29, 34]. In such a one-membrane P system,

rules are in the form of u → v, which, in a maximally parallel manner, replaces multiset u

(in current configuration which is a multiset of symbol objects) with multiset v.

21

Signals are a key to initiate biochemical reactions between and inside living cells. Many

examples can be found in a standard cell biology textbook [6]. For instance, in signal

transduction, it is known that guanine-nucleotide binding proteins (G proteins) play a key

role. A large heterotrimeric G protein, one of the two classes of G proteins, is a complex

consisting of three subunits: Gα, Gβ, and Gγ. When a ligand binds to a G protein-linked

receptor, it serves as a signal to activate the G protein. More precisely, the GDP, a guanine

nucleotide, bound to the Gα subunit in the unactivated G protein is now displaced with GTP.

In particular, the G protein becomes activated by being dissociated into a Gβ-Gγ complex

and a Gα-GTP complex. Again, the latter complex also serves as a signal by binding itself

to the enzyme adenylyl cyclase. With this signal, the enzyme becomes active and converts

ATP to cyclic AMP. As another example, apoptosis (i.e., suicide committed by cells, which

is different from necrosis, which is the result from injury) is also controlled by death signals

such as a CD95/Fas ligand. The signal activates caspase-8 that initiates the apoptosis.

Within the scope of Natural Computing (which explores new models, ideas, paradigms from

the way nature computes), motivated by these biological facts, it is a natural idea to study

P systems, a molecular computing model, augmented with a signaling mechanism.

In this paper, we investigate one-membrane signaling P systems (signaling systems in

short) where the rules are further equipped with signals. More precisely, in a signaling

system M , we have two types of symbols: object symbols and signals. Each configuration

is a pair consisting of a set S of signals and a multiset α of objects. Each rule in M is in

the form of s, u → v, s′ or s, u → Λ, where s, s′ are signals and u, v are multisets of objects.

The rule is enabled in the current configuration (S, α) if s is present in the signal set S and

u is a sub-multiset of the multiset α. All the rules are fired in maximally parallel manner.

In particular, in the configuration as a result of the maximally parallel move, the new signal

set is formed by collecting the set of signals s′ that are emitted from all the rules actually

fired during the move (and every signal in the old signal set disappears). Hence, a signal

may trigger an unbounded number of rule instances in a maximally parallel move.

We focus on verification problems of signaling systems; i.e., algorithmic solutions to a

22

verification query on whether a given signaling system does satisfy some desired behavioral

property. Such solutions not only help us understand the power of the maximally parallelism

that is pervasive in P systems but also would provide a way to validate a (signaling) P

system in vitro through digital computers when the P system is intended to simulate living

cells. However, since one-membrane P systems are Turing-complete, so are signaling systems.

Therefore, to study the verification problems, we have to look at restricted signaling systems.

A signaling system is non-cooperative if each rule is in the form of s, a → Λ or in the form

of s, a → bc, s′, where a, b, c are object symbols. All the results can be generalized to

non-cooperative signaling systems augmented with rules s, a → v, s′. We study various

reachability queries for non-cooperative signaling systems M ; i.e., given two formulas Init

and Goal that define two sets of configurations, are there configurations Cinit in Init and

Cgoal in Goal such that Cinit can reach Cgoal in zero or more maximally parallel moves in

M? We show that, when Init is a Presburger formula (roughly, in which one can compare

integer linear constraints over multiplicities of symbols against constants) and Goal is a region

formula (roughly, in which one can compare multiplicities of symbols against constants), the

reachability query is decidable. Notice that, in this case, common reachability queries like

halting and configuration reachability are expressible. We also show that introducing signals

into P systems indeed increases its computing power; e.g., non-cooperative signaling systems

are strictly stronger than non-cooperative P systems (without signals). On the other hand,

when Goal is a Presburger formula, the query becomes undecidable. Our results generalize

to queries expressible in a subclass of a CTL temporal logic and to non-cooperative signaling

systems with rules S, a → v, S ′ (i.e., the rule is triggered with a set of signals in S). We

also study the case when a signal has bounded strength and, in this case, non-cooperative

signaling systems become universal.

Non-cooperative signaling systems are also interesting for theoretical investigation, since

the signaling rules are context-sensitive and the systems are still nonuniversal as we show. In

contrast to this, rules a → v in a non-cooperative P system are essentially context-free. It is

difficult to identify a form of restricted context-sensitive rules that are still nonuniversal. For

23

instance, a communicating P system (CPS) with only one membrane [33] is already universal,

where rules are in the form of ab → axby or ab → axbyccome in which a, b, c are objects, x, y

(which indicate the directions of movements of a and b) can only be here or out. Also

one membrane catalytic systems with rules like Ca → Cv (where C is a catalytic) are also

universal. More examples including non-cooperative signaling systems with promoters, which

will be discussed further in this section, are also universal. Our non-cooperative signaling

systems use rules in the form of s, a → v, s′, which are in a form of context-sensitive rules,

since the signals constitute part of the triggering condition as well as the outcome of the

rules.

At the heart of our decidability proof, we use a form of upper-closed sets to serve as a

symbolic representation for configuration sets and prove that the symbolic representation

is invariant under the backward reachability relation of a non-cooperative signaling system.

From the studies in symbolic model-checking [8] for classic transition systems, our symbolic

representation also demonstrates a symbolic model-checking procedure at least for reach-

ability. In our undecidability proof, we use the well-known result on the Hilbert’s Tenth

Problem: any r.e. set (of integer tuples) is also Diophantine. We note that, for P systems

that deal with symbol objects, proofs for universality almost always use the theoretical tool

through matrix grammar with appearance checking [27] or through Minsky’s two-counter

machines. Here, we employ a new tool using Diophantine equations, which facilitates an

elegant proof of the universality result. With multiplication being easily implemented under

maximal parallelism, we feel that our new technique is of interest in its own right and might

find additional applications in P systems.

Signaling mechanisms have also been noticed earlier in P system studies. For instance,

in a one-membrane P system with promoters [7], a rule is in the form of u → v|p where p

is a multiset called a promoter. The rule fires as usual in a maximally parallel manner but

only when objects in the promoter all appear in the current configuration. Notice that, since

p may not be even contained in u, a promoter, just as a signal, may trigger an unbounded

number of rule instances. Indeed, one can show that a signaling system can be directly

24

simulated by a one-membrane P system with promoters. However, since one-membrane

non-cooperative P systems with promoters are known to be universal [7], our decidability

results on non-cooperative signaling systems have a nice implication: our signals are strictly

weaker than promoters (and hence have more decidable properties). The decidability results

also imply that, as shown in the paper, non-cooperative signaling systems and vector addition

systems (i.e., Petri nets) have incomparable computing power, though both models have a

decidable configuration-to-configuration reachability. This latter implication indicates that

the maximal parallelism in P systems and the “true concurrency” in Petri nets are different

parallel mechanisms. Other signaling mechanisms such as in [5] are also promoter-based.

• On Sequential and 1-Deterministic P Systems (by O. Ibarra, S. Woodworth, H. Yen

and Z. Dang) in Proc. of the 11th International Computing and Combinatorics Conference

(COCOON 2005), (LNCS 3595) , August 16 - 19, Kunming, Yunnan, China.

Initiated five years ago by Gheorghe Paun [29] as a branch of molecular computing,

membrane computing identifies an unconventional computing model, namely a P system,

from natural phenomena of cell evolutions and chemical reactions. A P system abstracts

from the way the living cells process chemical compounds in their compartmental structure.

Thus, regions defined by a membrane structure contain objects that evolve according to

given rules. The objects can be described by symbols or by strings of symbols, in such a way

that multisets of objects are placed in regions of the membrane structure. The membranes

themselves are organized as a Venn diagram or a tree structure where one membrane may

contain other membranes. By using the rules in a nondeterministic, maximally parallel

manner, transitions between the system configurations can be obtained. A sequence of

transitions shows how the system is evolving. Various ways of controlling the transfer of

objects from a region to another and applying the rules, as well as possibilities to dissolve,

divide or create membranes have been studied.

Membrane computing has been quite successful: many models have been introduced,

most of them Turing complete and/or able to solve computationally intractable problems

25

(NP-complete, PSPACE-complete) in a feasible time (polynomial), by trading space for

time. (See the P system website at http://psystems.disco.unimib.it for a large collection

of papers in the area, and in particular the monograph [30].) Due to the built-in nature of

maximal parallelism inherent in the model, P systems have a great potential for implementing

massively concurrent systems in an efficient way that would allow us to solve currently

intractable problems (in much the same way as the promise of quantum and DNA computing)

once future bio-technology (or silicon-technology) gives way to a practical bio-realization (or

chip-realization). In fact, the Institute for Scientific Information (ISI) has recently selected

membrane computing as a fast “Emerging Research Front” in Computer Science (http://esi-

topics.com/ erf/october2003.html).

In the standard definition of a P system, the computation is carried out in a maximally

parallel and nondeterministic manner [29, 30]. However, an interesting class of P systems

with symport/antiport rules was studied in [14] where each system is deterministic in the

sense that the computation path of the system is unique; i.e., at each step of the computa-

tion, the maximal multiset of rules that is applicable is unique. It was shown in [14] that

any recursively enumerable unary language L ⊆ o∗ can be accepted by a deterministic 1-

membrane symport/antiport system. Thus, for symport/antiport systems, the deterministic

and nondeterministic versions are equivalent.

The construction of the deterministic system in [14] is such that the size of the maximal

multiset of rules that is applicable at every step of the computation is either 1 or 2. We refer

to this system as 2-deterministic. In general, a k-deterministic system is one in which the

maximal multiset of rules applicable at each step is at most k. An interesting case is when

k = 1, i.e., the system is 1-deterministic.

A concept, which is more general than 1-deterministic, is that of sequential mode of

computation in P systems; i.e., at every step, only one nondeterministically chosen rule

instance is applied. Clearly, when a P system is 1-deterministic, then the system (which,

by definition, is still maximally parallel) can be treated as a sequential system. So if a

class of systems is nonuniversal under the sequential mode, then any 1-deterministic such

26

system in the class is also nonuniversal. Sequential P systems (also called asynchronous P

systems) have been studied in various places in the literature. Here, we present results that

complement these earlier results. In particular, we show the following:

1. Any sequential P system with cooperative rules (i.e., rules of the form u → v, where

u, v are strings of symbols) with rules for membrane creation and membrane dissolu-

tion can be simulated by a vector addition system (VAS), provided the rules are not

prioritized and the number of membranes that can be created during the computation

is bounded by some fixed positive integer. Hence the reachability problem (deciding if

a configuration is reachable from the start configuration) is decidable. It follows that

1-deterministic such systems have a decidable reachability problem. Interestingly and

somewhat surprisingly, if such cooperative systems are allowed to create an unbounded

number of new membranes during the course of the computation, then they become

universal.

2. A sequential communicating P system language acceptor (CPA) is equivalent to a par-

tially blind multicounter machine (PBCM) [18]. Several interesting corollaries follow

from this equivalence, for example:

(a) The emptiness problem for CPAs is decidable.

(b) The class of CPA languages is a proper subclass of the recursive languages.

(c) The language {anbn | n ≥ 1}∗ cannot be accepted by a CPA.

(d) For every r, there is an s > r and a language that can be accepted by a quasire-

altime CPA with s membranes that cannot be accepted by a quasirealtime CPA

with r membranes. (In a CPA, we do not assume that the CPA imports an input

symbol from the environment at every step. Quasirealtime means that the CPA

has to import an input symbol from the environment with delay of no more than

k time steps for some nonnegative integer k independent of the computation.)

(e) A quasirealtime CPA is strictly weaker than a linear time CPA. (Here, linear

27

time means that the CPA accepts an input of length n within cn time for some

constant c.)

(f) The class of quasirealtime CPA languages is not closed under Kleene + and com-

plementation.

We note that the relationship between PBCMs and sequential symport/antiport P

systems (similar to communication P systems) has been studied recently in [16], but

only for systems with symbol objects and not as language acceptors. Thus, the results

in [16] deal only with tuples of nonnegative integers defined by P systems and counter

machines. For example, it was shown in [16] that a set of tuples of nonnegative integers

that is definable by a partially blind counter machine can be defined by a sequential

symport/antiport system with two membranes. Our new results above cannot be

derived from the results in [16].

3. The results for CPA above generalize to cooperative system acceptors with membrane

dissolution and bounded creation rules. Hence, the latter are also equivalent to PBCMs.

4. Any recursively enumerable unary language can be accepted by a 1-deterministic 1-

membrane CPA with prioritized rules.

5. The reachability problem for sequential catalytic systems with prioritized rules (hence,

for 1-deterministic such machines as well) is NP-complete. It follows from this result

that a 1-deterministic catalytic system with prioritized rules can only accept recursive

languages.

Note that from items 4 and 5 above, when the rules are prioritized, there are 1-deterministic

systems that are universal and 1-deterministic systems that are not universal. In contrast,

from item 1, without prioritized rules, 1-deterministic systems are not universal.

• On Symport/Antiport Systems and Semilinear Sets (by O. Ibarra, S. Woodworth

H. Yen, and Z. Dang) in Proc. of the 6th International Workshop on Membrane Computing

(WMC6) , (LNCS 3850), July 18 - 21, 2005, Vienna, Austria.

28

A general problem of clear interest in the area of membrane computing or P systems is to

find classes of nonuniversal P systems that correspond to (i.e., characterize) known families

of languages or subsets of Nk (where N is the set of nonnegative integers, and k is a positive

integer), and to investigate their closure and decidability properties. For example, P system

characterizations of ET0L, bounded languages accepted by multihead finite automata, and

context-sensitive languages are known. Here, we give characterizations of semilinear sets in

terms of restricted models of symport/antiport systems.

A popular model of a P system is the symport/antiport system first introduced in [31].

It is a system whose rules closely resemble the way membranes transport objects between

themselves in a purely communicating manner. Symport/antiport systems (SA systems)

have rules of the form (u, out), (v, in), and (u, out; v, in) where u, v are multisets that are

represented as strings (the order in which the symbols are written is not important, since

we are only interested in the multiplicities of each symbol). A rule of the form (u, out)

in membrane i sends the elements of u from membrane i out to the membrane (directly)

containing i. A rule of the form (v, in) in membrane i transports the elements of v into

membrane i from the membrane enclosing i. Hence this rule can only be used when the

elements of v exist in the outer membrane. A rule of the form (u, out; v, in) simultaneously

sends u out of the membrane i while transporting v into membrane i. Hence this rule cannot

be applied unless membrane i contains the elements in u and the membrane surrounding i

contains the elements in v. The rules are applied in a nondeterministic maximally parallel

manner. In general, the number of times a particular rule is applied at anyone step can be

unbounded. We require that the application of the rules is maximal: all objects, from all

membranes, which can be the subject of local evolution rules have to evolve simultaneously.

Note that there may be several maximal multisets of rules applicable in a step, but we

nondeterministically select only one such multiset to apply.

Formally an SA system is defined as

M = (V, H, µ, w1, · · · , w|H|, E,R1, · · · , R|H|, io)

where V is the set of objects (symbols) the system uses. H is the set of membrane labels.

29

The membrane structure of the system is defined in µ. The initial multiset of objects within

membrane i is represented by wi, and the rules are given in the set Ri. E is the set of objects

which can be found within the environment, and io is the designated output membrane.

(When the system is used as a recognizer or acceptor, there is no need to specify io.) A large

number of papers have been written concerning symport/antiport systems. For example, it

has been shown that “minimal” such systems (with respect to the number of membranes,

the number of objects, the maximum “size” of the rules) are universal in the sense that

they can simulate the computation of Turing machines or, equivalently, counter machines.

See the P system website at http://psystems.disco.unimib.it for papers in symport/antiport

systems and in the general area of membrane computing, and in particular the monograph

[30]. In this paper, we introduce restricted models of symport/antiport systems that are

used as acceptors or generators of sets of tuples of nonnegative integers and show that they

characterize exactly the semilinear sets.

First, we look at systems that are acceptors. One model is called simple SA. The system

consists of k + 1 membranes, arranged in a 2-level structure: membranes m1, m2, .., mk

(the input membranes) are at the same level and enclosed in membrane mk+1 (the skin

membrane). The set of objects is V = F ∪ {o}, where F is a finite set of objects not

containing the distinguished symbol o. The restriction is that in the rules of the forms

(v, in) and (u, out; v, in), v does not contain o’s. Thus, the number of o’s in each membrane

can only be decreased. The environment initially contains a fixed (finite) multiset over

F . The system accepts a k-tuple (n1, ..., nk) of nonnegative integers if, when the k input

membranes are given on1 , ..., onk and no o’s in membrane mk+1 (with some fixed strings

w1, ..., wk+1 ∈ F ∗ in membranes m1, ..., mk+1, respectively), the system halts (i.e., no rule

in any of the membranes is applicable). We show that a set R ⊆ Nk is accepted by a

simple SA if and only if it is a semilinear set. (This result generalizes to the case when there

is an infinite supply of o’s in the environment, and the v’s can contain o’s in the rules in

the skin membrane mk+1.) As a consequence, the class of sets of tuples accepted by these

SAs are closed under union, intersection, and complementation. Moreover, the emptiness,

30

disjointness, containment, and equivalence problems for simple SAs are decidable. When

the model is generalized to a multi-level structure, the set of tuples accepted need no longer

be semilinear. In particular, suppose we have a k-membrane SA, where membrane mi is

enclosed in membrane mi+1 for 1 ≤ i ≤ k − 1. Membrane m1 is the only input membrane

and membrane mk is the skin membrane. Again, in the rules (v, in) and (u, out; v, in), v

does not contain o’s. We call this model a k-membrane cascade SA. Note that the system

accepts a subset of N . We show that 3-membrane cascade SAs can accept nonsemilinear

subsets of N . We also prove that their emptiness problem is undecidable by showing that

they can simulate the computations of two-counter machines.

The k-membrane cascade SA can be generalized. A k-membrane extended cascade SA

has a set of objects V = F ∪ Σr, where now the input alphabet is Σr = {a1, ..., ar} (r ≥ 1).

Again the rules are restricted in that in the rules of the forms (v, in) and (u, out; v, in), v does

not contain any symbol in Σr. The environment initially contains only a fixed multiset over

F . Also, there are fixed strings w1, ..., wk ∈ F ∗ such that the system starts with w1a
n1
1 ...anr

r

in membrane m1 (the input membrane) and wi in membrane mi for 2 ≤ i ≤ k. If the system

halts, then we say that the r-tuple (n1, ..., nr) is accepted. We show that a set R ⊆ N r is

accepted by a 1-membrane extended cascade SA if and only if it is semilinear. However, 2-

membrane extended cascade SAs can accept nonsemilinear sets, and their emptiness problem

is undecidable, even for r = 2 (i.e., there are two symbols in the input alphabet). Note that

for the case r = 1 (i.e., Σ contains only a single symbol), the set of unary numbers is

semilinear (since this is a special case of the result above for 2-level simple SA).

We then consider symport/antiport models that are used as generators. One such model

is a 2-level symport/antiport system with membranes m1, ..., mk,mk+1, where membranes

m1, ..., mk are at the same level, and they are enclosed in the skin membrane mk+1. There

is an infinite supply of o’s in the environment (but the initial multiplicities of symbols in F

in the environment are fixed). We require that for membranes m1, ..., mk, in the rules of the

forms (u, out) and (u, out, v, in), u does not contain o’s. Note that there is no restriction on

the rules in the skin membrane. We say that (n1, ..., nk) is generated if, when started with no

31

o’s in the system and fixed wi ∈ F ∗ in membrane mi (1 ≤ i ≤ k + 1), the system halts with

on1 , ..., onk in membranes m1, ..., mk. We call this system a simple SA generator. We show

that a set R ⊆ Nk is generated by a simple SA generator if and only if R is a semilinear

set. Again, generalizing the model to have at least 3 levels would allow it to generate a

nonsemilinear set. In fact, for any recursively enumerable (RE) set R, the set {2n | n ∈ R}
can be accepted by a 3-level system, while R can be accepted by a 4-level system.

We also look at a 1-membrane symport/antiport system with a set of objects V = F ∪Σr,

where Σr = {a1, ..., ar}, and whose rules are restricted so that in the rules of the forms (u, out)

and (u, out; v, in), u does not contain any symbol in Σr. Thus symbols in Σr can only be

transported from the environment into the membrane (note that, by the restriction, once

these symbols enter the membrane, they remain in the membrane). The system starts with

a fixed string w ∈ F ∗. The environment initially contains a fixed multiset over F and an

infinite supply of each ai (1 ≤ i ≤ r). We show that the sets of r-tuples generated by these

systems are exactly the semilinear sets over N r. However, when there are 2 membranes,

where again, the second (i.e., innermost) membrane cannot transport symbols in Σr into the

first (skin) membrane, the set of tuples generated by such a system need not be semilinear.

In fact, for any RE set R, the set {(2n, 0) | n ∈ R} can be generated by a 2-membrane system

with input alphabet Σ2, while the set {(n, 0, 0) | n ∈ R} can be generated by a 2-membrane

system with input alphabet Σ3.

References

[1] P. Abdulla, A. Annichini, and A. Bouajjani, Symbolic Verification of Lossy Channel Systems:

Application to the Bounded Retransmission Protocol, in Proc. TACAS’99, LNCS 1579, pp.

208–222, 1999.

[2] R. Alur, and D. Dill, Automata for Modeling Real-Time Systems, in Proc. 17th ICALP, LNCS

443, pp. 332–335, 1990.

32

[3] R. Alur, T. Henzinger, M. Vardi, Parametric Real-Time Reasoning, in Proc. 25th ACM STOC,

pp. 592–601, 1993.

[4] Nina Amla, E. Allen Emerson, and Kedar S. Namjoshi. Efficient decompositional model check-

ing for regular timing diagrams. In Conference on Correct Hardware Design and Verification

Methods, pages 67–81, 1999.

[5] Ioan I. Ardelean, Matteo Cavaliere, and Dragos Sburlan. Computing using signals: From cells to

P Systems. In Second Brainstorming Week on Membrane Computing, Sevilla, Spain, February

2-7 2004, pages 60–73, Sevilla, Spain, February 2-7 2004.

[6] W. M. Becker, L. J. Kleinsmith, and J. Hardin. The World of the Cell (5th Edition). Benjamin

Cummings (San Francisco), 2003.

[7] P. Bottoni, C. Martin-Vide, Gh. Paun, and G. Rozenberg. Membrane systems with promot-

ers/inhibitors. Acta Informatica, 38(10):695–720, 2002.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.

[9] Cherkasova, L., Howell, R., Rosier, L.: Bounded self-stabilizing Petri nets, Acta Informat., 32,

1995, 189–207.

[10] Dijkstra, E.: Self-stabilizing systems in spite of distributed control, C. ACM, 17, 1974, 643–

644.

[11] J. Esparza. More infinite results. In Proc. of INFINITY’96, Research Report MIP-9614, Uni-

versity of Passau, 1996.

[12] J. Esparza. Decidability of model-checking for infinite-state concurrent systems. Acta Infor-

matica, 34:85-107, 1997.

[13] K. Fisler. A Unified Approach to Hardware Verification Through a Heterogeneous Logic of

Design Diagrams. PhD thesis, Computer Science Department, Indiana University, August

1996.

[14] R. Freund, G. Păun, On deterministic P systems, See P Systems Web Page at

http://psystems.disco.unimib.it.

33

[15] R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally universal P systems without prior-

ities: two catalysts are sufficient, Theoretical Computer Science 330 (2) (2005) 251–266.

[16] Frisco, P.: About P systems with symport/antiport, Second Brainstorming Week on Membrane

Computing, Sevilla, Spain, 2004, 224–236.

[17] Gouda, M., Howell, R., Rosier, L.: The instability of self-stabilization, Acta Informat., 27,

1990, 697–724.

[18] Greibach, S. A.: Remarks on blind and partially blind one-way multicounter machines, The-

oretical Computer Science, 7(3), 1978, 311–324.

[19] Herman, T.: A comprehensive bibliography on self-stabilization, Chicago Journal of The-

oretical Computer Science, Available from http://www.cs.uiowa.edu/ftp/selfstab/bibliography,

1998.

[20] T. Hune, J. Romijn, M. Stoekinga, and F. Vaandrager, Linear Parametric Model Checking of

Timed Automata, in Proc. TACAS, LNCS 2031, pp. 189-203, 2001.

[21] Howell, R., Rosier, L. and Yen, H. Normal and sinkless Petri nets, J. of Computer and System

Sciences 46, 1-26, 1993.

[22] Ichikawa, A. and Hiraishi, K. Analysis and control of discrete event systems represented by

Petri nets, LNCIS 103 ,115-134, 1987.

[23] Kosaraju, R. Decidability of reachability in vector addition systems, Proc. the 14th Annual

ACM Symposium on Theory of Computing, 267-280, 1982.

[24] Lipton, R. The reachability problem requires exponential space, Technical Report 62, Yale

University, Dept. of CS., Jan. 1976.

[25] Landweber, L., Robertson, E.: Properties of conflict-free and persistent Petri nets, J. Assoc.

Comput. Mach., 25, 1978, 352–364.

[26] Mayr, E. An algorithm for the general Petri net reachability problem, SIAM J. Comput. 13,

441-460, 1984.

34

[27] C. Martin-Vide and Gh. Paun. Computing with membranes (P systems): universality results.

In MCU, volume 2055 of Lecture Notes in Computer Science, pages 82–101. Springer, 2001.

[28] G. Păun, Computing with membranes, Turku University Computer Science, Research Report

No. 208, 1998.

[29] G. Păun, Computing with membranes, Journal of Computer and System Sciences 61 (1) (2000)

108–143.

[30] G. Păun, Membrane Computing: An Introduction, Springer-Verlag, 2002.

[31] A. Păun, G. Păun, The power of communication: P systems with symport/antiport, New

Generation Computers 20 (3) (2002) 295–306.

[32] Reisig, W., Petri Nets: An Introduction, Springer-Verlag New York, Inc., New York, NY,

1985.

[33] P. Sosik, P systems versus register machines: two universality proofs, in: Pre-Proceedings of

Workshop on Membrane Computing (WMC-CdeA2002), Curtea de Argeş, Romania, 2002, pp.

371–382.

[34] P. Sosik and R. Freund. P systems without priorities are computationally universal. In WMC-

CdeA2002, volume 2597 of Lecture Notes in Computer Science, pages 400–409. Springer, 2003.

[35] R. Valk, and M. Jantzen, The Residue of Vector Sets with Applications to Decidability in

Petri Nets, Acta Informatica, 21, 643-674, 1985.

[36] F. Wang, Parametric Timing Analysis for Real-Time Systems, Information and Computation,

130(2), 131-150, 1996. Also in Proc. 10th IEEE LICS, 1995.

[37] F. Wang, Parametric Analysis of Computer Systems, Formal Methods in System Design, 17,

39-60, 2000.

[38] F. Wang, and H. Yen, Parametric Optimization of Open Real-Time Systems, in Proc. SAS

2001, LNCS 2126, pp. 299-318, 2001.

[39] Yamasaki, H. Normal Petri nets, Theoretical Comput. Science 31, 307-315, 1984.

35

[40] Yen, H. A valuation-based analysis of conflict-free Petri nets, Systems and Control Letters

45(5), 387-395, 2002.

[41] Yen, H. On the regularity of Petri net languages, Inform. and Comput., 124(2), 168-181,

1996.

[42] Yen, H. On reachability equivalence for BPP-nets, Theoretical Computer Science, 179,

301-317, 1997.

36

