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中文摘要 
本計畫三年的目標﹕(1) 為排序佳化模擬設計削減

搜尋空間的新方法，(2) 將方法開發成工具模組，作為
整合系統佳化平台的一部份，(3) 將模擬進行排序佳化
應用在次世代半導體廠的有效生產排程。第一年中我們

以平穩(Stationary)馬可夫決策問題為載具，提出模擬排
序策略疊代(OOBPI) 的構想，利用策略疊代的架構，以
模擬排序佳化來估算每一狀態的cost-to-go 函數值與最
佳決策。初步模擬結果顯示這個構想的計算效能較傳統

模擬為基礎的策略疊代法可快十倍。 
第二年中我們完成OOBPI演算法的設計，包括方法

理論、收斂分析、數值驗證及推展至一般動態規化的初

探。在半導體晶圓生產模擬器方面，我們加入產品優先

序之考量，以模擬半導體廠具有不同優先次序之生產排

程。目前正結合OOBPI方法與半導體晶圓生產模擬器進
行生產排程組合選擇的研究。 

 
關鍵詞: 排序佳化、策略疊代、演算法設計、生產模
擬、產品優先序、生產排程 
 
Abstract 

The three-year research objectives of this project are 
(1) to design search space reduction methods for simulation- 
based ordinal optimization (OO), (2) to develop these 
methods into tool modules as part of an integrated system 
optimization platform, and (3) to apply simulation-based OO 
to effective production scheduling of 300mm foundry fabs. 
In the first year, we considered the class of Stationary 
Markov decision problems as the conveyer problem.  We 
proposed an idea of OO-Based Policy Iteration (OOBPI) to 
handle the combinatorial complexity of decisions over the 
time axis. Utilizing the framework of policy iteration, we 
approximate the optimal cost-to-go and optimal decision of 
each state by simulation-based OO. Preliminary numerical 
studies indicated one order of speed-up of OOBPI over the 
traditional simulation-based policy iteration.  

In the second year, we have completed the design of 
OOBPI algorithm, including the theories for the method, 
convergence analysis, simulation study and exploration of 
possible extension to general dynamic programming. In 

developing a simulator of semiconductor wafer fabrication 
with differentiated services, we have incorporated priority 
service discipline into the simulator.  We are now combining 
OOBPI with the fab simulator to study dynamic composition 
of production schedules for fabs. 

 
Key words: Ordinal Optimization, Policy Iteration, 
Algorithm design, Fab Simulator, Priority, Production 
Scheduling  
 

二、計畫緣由與目的 
Ordinal optimization (OO) is an emerging approach for 

efficient optimization of complex systems.  Instead of 
finding the optimal solution, ordinal optimization selects a 
good enough solution from a subset of options from the 
design space based on a certain criteria and a specified 
confidence level.  The principle investigator (PI) of this 
proposal has conducted research on applying simulation-
based OO and optimal computing budget allocation (OCBA) 
to scheduling semiconductor wafer fabrication.  Motivated 
by the findings of previous research and based on the 
foundation established, the PI considers simulation-based 
OO of good potential for good enough and efficient 
production scheduling/dispatching of next generation fabs, 
where the problem complexity and the need for optimization 
are much higher than those of current fabs.   
 

The PI has been is performing a research under NSC 
support on search space reduction by combining design of 
experiment (DOE) and simulation-based OO (OODOE).  In 
this three-year research project, the PI will adopt the salient 
production scheduling/dispatching problems of 300mm 
foundry fab as the conveyers and continue to advance his 
research in both design of new methods and applications 
to production.  Specific objectives are  
(1) to design search space reduction method  for simulation-
based OO, (2) to develop these methods into tool modules as 
part of an integrated system optimization platform, and to 
apply simulation-based OO to effective production 
scheduling of 300mm foundry fabs. 



In the first year, we considered the class of Stationary 
Markov decision problems as the conveyer problem.  We 
proposed an idea of OO-Based Policy Iteration (OOBPI) to 
handle the combinatorial complexity of decisions over the 
time axis. Utilizing the framework of policy iteration, we 
approximate the optimal cost-to-go and optimal decision of 
each state by simulation-based OO. Preliminary numerical 
studies indicated one order of speed-up of OOBPI over the 
traditional simulation-based policy iteration.  
 
1. 第二年目的 

In the second year, our objectives have been on  
(1) the complete design of OOBPI algorithm, including the 

theories for the method, convergence analysis, 
simulation study and exploration of possible extension 
to general dynamic programming, and 

(2) the development of a simulator of semiconductor wafer 
fabrication with differentiated services,  

(3) combination of OOBPI with the fab simulator to study 
dynamic composition of production schedules for fabs. 

 
三、研究方法 
 
Part I: Design and Analysis of the OOBPI 

Algorithm 
 
2. Simulation-based Policy Iteration (SBPI) 

Markov Decision Problem (MDP) is one class of 
stochastic optimal control problems [1,2,3]. A MDP is 
characterized by states, controls, state transition 
probabilities, transition costs, and decision horizon. In this 
paper, we consider a stationary MDP with finite controls and 
states. To formulate the problem, let us define some 
notations first. 
Notations: 

 : Discount factor, [ ]0,1α ∈ ; 

S :  Set of states; 
I : State index, i S∈ ; 
U : Set of controls; 
u : Control index, u U∈ ; 
( )iU  : Set of admissible controls at state i , ( )U i U□ ; 
T : Decision Time horizon; 
 : Policy, a function mapping form state space to 

control space, S C; 
t : Index of time epoch, when a state transition 

occurs, t=1,…,T; 

tu  : Control at time t , and ( )t tu iπ= ; 

ti  : State at time t ; 

t : Randomness outcome at time t with tω ∈Ω , ;t∀  

f(.,.,.) : State transition function, × ×Ω →sS U S ; 
Si :  Set of states that can be reached one transition 

from state i; 
{ }ti : A realization of stat trajectory ti , 1, 2,t = K ; 

pij(u) : Transition probability from state ito state 

j under control u; 
( ), , , tg i u j ω : transition cost from state i to state j under 

control u with an outcome t 
 

In the MDP, the transition cost function ( ), ,g i j ω and 
the transition probability pij(u) have to be estimated via 
Monte-Carlo simulation. Given a stationary policy π , the 
discounted expected cost-to-go (CTG) of an initial state i is 
defined as 

( ) ( )
1

1 0
0

lim , , |
T

t
w t t tT t

J i E g i i i iπ α ω
−

+→∞ =

 = ⋅ = 
 
∑         

(2.1) 
The state transition is described by 

( )1 , ( ),t t t ti f i iπ ω+ = , t= 0,1,2,… ,                         (2.2) 
where t’s are i.i.d. The stationary MDP (SMDP) of this 
paper is then 
 ( )0 0min  subject to (2.2) for any ∈J i i Sππ

            (2.3) 

2.1 SBPI algorithm 
In the literature, Cooper et. al. [4] have proposed a 

simulation-based policy iteration (SBPI) algorithm to solve a 
stationary MDP problem with minimizing the average 
transition cost as the objective. Their SBPI algorithm is 
described as follows.   

SBPI consists of two steps: policy evaluation and 
policy improvement. The policy evaluation step performs a 
one-step analysis that estimates the effect of each admissible 
control 0( )u U i∈ by using the control u  for 0t =  while 
assuming a given policyπ for 1t ≥ . Given a stationary policy 
 and an initial state i, the policy iteration step first runs 
Monte-Carlo simulation to obtain N sample paths of length 
T. The cost-to-go under policy  can be estimated by 
simulation as 

( ) ( )
1

1 1
1

ˆ , 1 , , ,
T

t
t t t t

t
J i i T g i u iπ α ω

−

+
=

= − ≡ ⋅∑ω           (2.4) 

where   = {t, t=1,…,T-1} and { }, 1,..., 1ti t T= − is a 
sample state trajectory generated according to state equation 
(2.2). Then define a one-step CTG (1-CTG) as 

( ) ( ) ( )0
ˆˆ ( | , , ) [ , , , , ]

i

ij
j S

r i u T p u g i u j J j Tπ πω α
∈

≡ ⋅ + ⋅∑ω ω   (2.5)  

and ( )ijp u  is either known a priori or estimated from 
simulation. The time horizon parameter T will be omitted in 
our later discussions for notational simplicity.  

Let the sample mean and variance of the1-CTG 

be ( )ˆ | ,E r i uω π  ω  and ( )2
ˆ | ,r i uω πσ   ω respectively. The 

95% confidence interval of the sample mean [12] can be 

approximated by ( )( ) ( )2
ˆ | ,

ˆ | , 1.96 ,
r i u

E r i u
N

ω π
ω π

σ    −



ω
ω  

( )( ) ( )2
ˆ | ,

ˆ | , 1.96
r i u

E r i u
N

ω π
ω π

σ    +



ω
ω . 

Define a simulation accuracy index 



β ≡1.96 
( )2

ˆ | ,r i u

N

ω πσ   ω
/ ( )( )ˆ | , 100%E r i uω π ×ω ,    (2.6) 

which implies that the simulation is stopped when the half-
length of the 95% confidence interval over the center point 
is less than β. It is intuitively clear that the larger the N, the 
smaller the β and the higher accuracy of ( )ˆ | ,E r i uω π  ω . 

The policy improvement step updates the policy by 
selecting for each state the best control among all admissible 
controls of the state based on their sample means of 1-CTG.  
The policy evaluation and policy improvement steps iterate 
till the policy stays the same from one iteration to another.   
SBPI Algorithm 
Step (s1). Initialization  

Input an initial policy 0π , a simulation accuracy index 
*β , initial number of simulation replications N0, and 

an incremental number of simulation replicationsτ ; 
k = 0;  

Step (s2). Policy Evaluation  
 For every state i S∈  

For every admissible control ( )u U i∈  

2.1  Set N= N0 and π = kπ ; 
2.2 Simulate ˆ ( | , )r i uπ ω for N replications, each 

with T time epochs, and compute 

 ( )ˆ | ,E r i uω π  ω and ( )2
ˆ | ,r i uω πσ   ω ; 

2.3 If

2

*

ˆ ( | , )
1.96

ˆ ( | , )

r i u
N

E r i u

ω π

ω π

σ

β

  ⋅
≤

  

ω

ω
, go to step 

(s3); 
2.4 Simulate additionalτ replications;  

N N τ= + , go to step 2.2; 
Step (s3). Policy Improvement 

For every state i S∈  

( )
( ){ }1 ˆarg min ( | , )k

u U i
i E r i uω ππ ω+

∈
∈    . 

Step (s4). Iteration  
If 1k kπ π+ = , then output kπ  and stop.  
Otherwise, set 1k k= + and go to step (s2) 
 

The main challenge of SBPI is that with Monte-Carlo 
simulation, ( )( )ˆ | ,E r i uω π ω converges slowly at rate 

1O
N

 
 
 

 [6, 7]. The total simulation time can be 

prohibitively expensive if we want to have an accurate 
estimation of CTG in policy evaluation.  However, it is 
unclear in SBPI how the accuracy of 1-CTG estimation 
affects the identification of the best admissible control of 
each state, i.e., how it affects the policy improvement. 

2.2 Simulation Study of SBPI 
 To investigate the relationship between the estimation 
accuracy (EA) of CTG and the accuracy of identifying the 
best control of each state, i.e., policy accuracy (PA), we 
perform a simulation study of SBPI.  We design a study 
example of discounted stationary MDP with 4 states, 10 

admissible controls for every state and =0.9, where the 
state transition probabilities are randomly generated.  Let us 
first define PA of SBPI. 
Definition 2.1 Policy accuracy (PA) of SBPI 
Consider applying SBPI to run over N replications of the 
example MDP.  Let *ˆnπ be the control policy obtained by 

SBPI from the nth replication and *π the optimal control 
policy of the MDP.  Define a score function 

* *ˆ1,  ( ) ( ),  every ;
( )

0,otherwise.                 
n

n
if i i for i S

I i
π π = ∈

= 


        (2.7) 

The PA of SBPI is then 

1

1 1[ ( )]
| |

N

n
n i S

PA I i
N S= ∈

≡ ∑ ∑  .                                (2.8) 

 
We then run SBPI over 100 replications of the 

example MDP and vary the EA requirement, i.e., β∗ . Fig 2.1 
shows how PA varies with β∗  , where PA degrades with 
the increase of β∗  .in an approximate rate of 0.68.  Fig 2.2 
shows the CPU time needed to obtain the required EA, β∗  , 
of 1-CTG.  Note that the CPU time decreases rapidly with 
the increase of β∗  .For example, when β∗  is relaxed from 
1% to 7%, the PA decreases from 99% to 84% while the 
CPU time needed decreases from 38 to 10 seconds.  Such 
results indicate that relaxing EA requirement for 1-CTG 
estimation by simulation still leads to reasonably good PA 
but may largely reduces the computation time. 

 
3. Ordinal Optimization-based Policy Iteration 
(OOBPI) Algorithm 
  The simulation study of SBPI in Section 2 indicates 
that a good policy accuracy can be achieved at relatively 
loose accuracy of the 1-CTG estimation by simulation.  A bit 
sacrifice of PA may lead to significant reduction of 
simulation time in estimating the 1-CTG of each admissible 
control for a given state.  The identification of the best 
control for each state essentially ranks individual controls in 
an ascending order of the 1-CTG estimates. Such 
observations motivate our combination of ordinal 
optimization [5] with SBPI into a new and efficient method 
for solving SMDP.  
  By exploiting the ordinal optimization concept, the key 
design idea of the OOBPI algorithm lies in replacing the EA 
requirement in the policy evaluation step of SBPI with a 
lower bound criterion on the probability of correct ranking 
among controls.  That the top-ranking control obtained by 
simulation for a state is actually the best control for the state 
is defined as the event of correct selection (CS).  In each 
iteration of OOBPI, the simulation for 1-CTG estimation 
over all the admissible controls of a state stops once a good 
enough control is identified, i.e., probability of CS ≡ P{CS} 
> p*, where  p* is a pre-specified probability.  Theory of 
ordinal optimization says that P{CS} converges 
exponentially with respect to the number of simulation 
replications, N, while the EA of SBPI converges slowly at 

rate 1O
N

 
 
 

 [6, 7].  So, adoption of OO in each iteration 

may lead to a good enough policy improvement at a 



moderate p* requirement. The good enough policy 
improvement in turn may get the estimated 1-CTG closer to 
the optimal CTG in the next iteration. Computation 
efficiency may thus be expected.  

 In specific, the OOBPI design applies the theoretic 
results of OO as follows.  

Theorem 1 Exponential Convergence of P{CS} 
Suppose the simulation replications for each control are i.i.d. 
and the simulation replications between any two admissible 
controls are independent. Assume that ( )ˆ | ,r i uπ ω  has a 
finite moment generating function. Then P{CS} converges to 
one exponentially.  More specifically, there are α > 0 and β 
> 0 such that P{CS} ≥ 1 - αe-βN. 
Proof:  Theorem 5.1 of [8]. 
 

While the confidence probability P{CS} could converge 
at an exponential rate, a critical issue in applying it to 
ordinal optimization is the estimation of the P{CS} itself.  
Using a Bayesian model, [13] developed an lower bounding 
technique to P{CS} when the number of designs is large.   
Theorem 2 Lower Bound Approximation of P{CS} 
Let ( )( )ˆ | ,E r i uω π ω , u∈ Si, denote the random variable 
whose probability distribution is the posterior distribution of 
the expected performance for control u under a Bayesian 
model.  A lower bound to P{CS} for a state i can be 
calculated as, 

Pi{CS}≥ ( )( ) ( )( )
( ),

ˆ ˆ{ | , | , }
u U i u b

P E r i b E r i uω π ω πω ω
∈ ≠

<∏    

≡Approximate Probability of Correct Selection for state   i 
(APCS(i)),                          (3.1)  

where b is the control with minimum ( )( )ˆ | ,E r i uω π ω among 

all u∈ Si. 
Note that the computation of APCS is simply a product of 
pairwise comparison probabilities, which is simple to 
compute.  Assume that ( ), , , tg i u j ω be independent among 
all state pairs (i,j) and be i.i.d over time with  mean and 
variance ( )2,ij ijµ σ . Then according to the central limit 

theorem, ( )ˆ ,J i Tπ in Eq. (2.4) and the 1-CTG ( )ˆ | ,r i uπ ω  
are can be approximated by random variables of normal 
distributions.   

Let ( )ˆ | ,r i uπ ω ~ ( )( ) ( )( )2
ˆ ˆ| , , | ,E r i u r i uωω π πω σ ω Ν   ,  

the pairwise comparison probability in APCS(i) 
( )( ) ( )( )ˆ ˆ{ | , | , }P E r i b E r i uω π ω πω ω<  

( ) ( )
( ) ( )2 2

ˆ ˆ| , | ,

ˆ | , | ,

E r i u E r i b

r i u r i b
N N

ω π ω π

ω π ω π

ω ω

σ ω σ ω

 
 

   −    = Φ 
       + 

 

,              (3.2) 

where Φ is the standard normal accumulative distribution. 
APCS  for a state i is therefore 

( ) ( )( ) ( )( )
( ),

ˆ ˆ{ | , | , }
u U i u b

APCS i P E r i b E r i uω π ω πω ω
∈ ≠

= <∏

( ) ( )
( ) ( )( ) 2 2,

ˆ ˆ| , | ,

ˆ ˆ| , | ,u U i u b

E r i u E r i b

r i u r w i b
N N

ω π ω π

ω π ω π

ω ω

σ ω σ∈ ≠

 
 

   −    = Φ 
       + 

 

∏      (3.3) 

According to [13], APCS should provide a good 
approximation to P{CS}.  It is therefore adopted in OOBPI 
for calculating a lower-bound of the probability that the top-
ranking control by simulation is indeed the optimal control 
for the state. 

The detailed OOBPI algorithm is summarized as 
follows: 
OOBPI Algorithm 
Step O1: initialization.  

Input an initial policy 0π , a simulation confidence level 
of correct selection *P , and an incremental number of 
simulation replicationsτ ; 
k = 0;  

Step O2: Policy evaluation 
     Set N= N0, and   kπ ; 
 O2.1 For every state i S∈  

For every admissible control ( )u U i U∈ ⊂  
O2.2 Simulate ˆ ( | , )r i uπ ω for  more replications, each 

with T time epochs; 

Compute ( )ˆ | ,E r i uω π  ω  and ( )2
ˆ | ,r i uω πσ   ω ; 

Step O3: Policy improvement 
O3.1 Find the optimal control b based on estimated 1-

CTG, 

i.e. 
( )

( ){ }ˆarg | ,
u U i

b Min E r i uω π∈
 ≡  ω  ; 

O3.2 Calculate ( )APCS i according to (3.3); 

O3.3 Check if ( ) *APCS i P>  for all i, then  

( )1k i bπ + =  and stop,  
Else set N N τ= + ,  

go to Step O2.1; 
Step O4: Iteration 

If 1k kπ π+ = , then stop and set * kπ π= ;  
otherwise k = k+1 and return to Step O2. 

 
The major differences of OOBPI with respect to SBPI lie in 
steps O3.2 and O3.3. The primary objective of OOBPI is to 
identify good admissible controls that perform relatively 
better than others rather than to accurately estimate the cost-
to-go for all controls under consideration. 
 
3. Convergence Analysis of OOBPI 

 In this section, we shall provide easily-verifiable 
sufficient conditions under which the OOBPI algorithm 
converges asymptotically to an optimal policy.  The 
sufficient conditions are derived by utilizing the 
convergence analysis of SBPI [4] and a P{CS} 
approximation technique in the ordinal optimization context 
[14].  There are four steps in the derivation: 



i) conversion of SBPI for an MDP problem with a 
discounted objective function to SBPI for an equivalent 
MDP problem with an objective of average reward; 

ii) derivation of sufficient conditions on number of 
simulation replications under which SBPI converges in 
application to the MDP problem with an objective of 
average reward by exploiting the result of [10]; 

iii) establishment of the relationship between a lower bound 
of P{CS} and the number of simulation replications per 
iteration; 

iv) derivation of P{CS} requirements under which OOBPI 
      converges asymptotically. 

  Detailed analysis and derivation are as follows. 
i) Conversion of SBPI for discounted to average reward  
In a stationary MDP, the average reward for state i under 

policy  is defined as 

( ) ( )
1

1 0
0

1lim , ( ), , |
T

t t t tT t
v i E g i i i i i

Tπ ω π ω
−

+→∞ =

 = = 
 
∑          (4.1) 

The discounted reward in (2.1) and the average reward then 
have the following relationship: 

1( ) ( ),  
1

J i v i i Sπ πα
= ∀ ∈

−
                                     (4.2) 

It can be shown that by replacing ( )ˆ | ,r i uπ ω  in (2.5) with 

(1-α)  ( )ˆ | ,r i uπ ω , the SBPI finds the optimal policy for the 
corresponding MDP with average reward. 
ii) Sufficient convergence conditions of SBPI 
In the convergence analysis of BPI for SMDP problems with 
an objective of average reward, Cooper et al. provided a 
sufficient convergence of SBPI [4]. 
Proposition 1 (Proposition 5.5 of [4]) 
Let Nk, k=1, 2,…, be the number of simulation replications in 
iteration k of SBPI for SMDP problems with an objective of 
average reward.  If  

0

1
k kN

∞

=

< ∞∑ ,  

then the SBPI converges to an optimal policy with 
probability one. 
 Proposition 1 states that the simulation replications per 
iteration must grow “fast enough” as SBPI iterates to 
converge to the optimal policy.  One simple example of such 
sequences is { } { }0

k
kN n= , where n0 is an integer and n0 > 1.   

In this case, 0

0 0

1
1k k

n
N n

∞

=

= < ∞
−∑ .  

iii) Relationship between number of simulation replications  
and probability of correct selection 
We now establish the relationship between the number of 
simulation replications kN and Pi{CS} of the best control for 
state i based on the sample mean and variance of the 1-CTG, 

( )ˆ | ,E r i uω π  ω  and ( )2
ˆ | ,r i uω πσ   ω .  From [14], APCS in 

Eq. (3.3) asymptotically approaches 
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Let *
kP be the simulation confidence level of correct 

selection for iteration k, be an upper bound to  ( , )iλ π for 

all  and I, and ( )| | 1* 1 .k
sN

kP e ν −−= − In one iteration of 

OOBPI, *
kP should be set so that at least Nk  replications are 

run for each state i to achieve   
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iv) Sufficient convergence conditions of OOBPI 
It is desirable that sufficient condition setting of { *

kP } for 
OOBPI convergence does not require a prior statistics of the 

MDP. To ensure that 
k

k

N
N 1+  = n0, { *

kP } is determined by 

applying Eq. (4.4)  and we have 
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Theorem 3: Sufficient Convergence Conditions of 
OOBPI 
Let *

kP be the confidence level of correct selection for 
iteration k, 0< *

kP <1 and { *
kP } satisfies Eq. (4.6). Then 

OOBPI converges to the optimal policy with probability 
one. 
Proof: To achieve  *

kP  by OOBPI at iteration k, it requires 
at least kN  simulation replication for each state i and 
{ kN } satisfies the sufficient convergence conditions of 
SBPI. 

 
5. Simulation Study 

Now we perform simulation study of OOBPI over two 
stationary MDP examples. The first example is the same as 
that in Subsection 2.2 and the second example is a 
replacement problem taken from [15], which has 40 states, 
41 admissible controls per state and the discount factor 
    Relationship among the setting of  P{CS} for 
estimation of 1-CTG by simulation, policy accuracy and 
computation time is the key of this study.    

Although SBPI and OOBPI are different in the accuracy 
setting for 1-CTG estimation by simulation, simulation 
results of the two algorithms are still put in referential 
contrast.  We set    for SBPI to get the optimal policy for 



each example. 
In the evaluation of SBPI, various  values are used but it 
stays a constant among iterations in one run.   We set 

( )* 65 5 %kP k= + ⋅  for OOBPI, where *
kP  tightens up the 

accuracy as the iteration goes.  
In the simulation study over example 1, within the 

policy accuracy (PA) range of 85%~98%, the 
corresponding *

kP ranges from 70%~85% as depicted in Fig 
5.1.  The CPU time of SBPI increases from  4.2 seconds  to 
12.4 seconds in this PA range (Fig 2.2) while the 
corresponding CPU time range of OOBPI is 1.1 secs ~4.2 
secs (Fig 5.2).  

In the simulation study over example 2, Fig 5.3 shows 
the CPU time of each iteration of SBPI and OOBPI. The last 
item in Fig 5.3 is the total CPU time to reach an optimal 
policy. We find CPU time of each iteration in SBPI is almost 
the same.  This is because we select a fixed β . The CPU 
time of OOBPI increases as it iterates.  This is 
because *

kP increases as iteration increases. Note that in this 
study, *

0P can be very loose at the initial iteration but still 
leads to convergence to the optimal policy.  By comparing 
the performance of OOBPI over examples 1 and 2, we can 
also observe that as the MDP size increases, OOBPI may 
have good advantage in both efficiency and optimality. 

 
6. Fab Simulator with Priority Queues 

We enhance the Fab simulator developed by Hu and 
Chang [21] with priority queueing disciplines. Two fab 
models are considered: FAB1 and FAB 2.   
6.1 FAB1 and FAB2 Models 

FAB1 is adopted from an aggregated full-scale 
production line previously studied by [17].  This model 
consists of 60 production stages, 12 different machine 
groups and a total of 40 machines.  There is only one part 
type.  Its sequence of processing steps and the machine 
group used by each step are given in Figure 6.1.  Machines 
are subject to random failures, and each failed machine 
requires a random repair time.  All the times to failure, times 
to repair, and processing times have exponential 
distributions with various values of mean time to failure 
(MTTF), mean time to repair (MTTR) and mean processing 
time (MPT). 

FAB2 closely follows the model of [18], which is based 
on real life data and models the production facility of a 
semiconductor company.  This model is represented by 13 
different machine groups with jobs of 10 product families 
and the job class mix ratio is set as γi = 0.1 for i = 1, …,10.  
The last process steps of all the products will finish at MG 
13.  Its sequence of processing steps and the MG used by 
each step are given in Table 6.1.  Table 6.2 lists the basic 
information of the model.  Note that different machine 
groups have different processing time distributions in this 
FAB2 model. 

 
6.2 Addition of Priority Queue to Simulator  

The simulator in existence can simulate the situation for 
multiple part types manufactured by different machine 
groups, and consider deterministic re-entrant process flows. 

But in practice, each part types maybe has different priority 
to manufacture. Addition of priority queue to simulator is 
divided into two parts, one is single node study, and the 
other is fab queueing network study, as Figure 6.2. 

 In the first step, we add priority into the system which 
has single server and two priority part types called M/M/1 
non-preemptive priority queue. We compare the simulation 
results with the analysis results [19], and observe the 
covariance between priorities. The arrival and service 
process of each types are not always exponential distribution 
in real world, so we will simulate the general situation, and 
replace M/M/1: PR queue by GI/G/1: PR queue.  

 In the research of GI/G/1: PR queue, we surveyed many 
papers and find out the analysis results from [20]. In that 
paper, the priority queue is converted to as many separated 
G/G/1-Special Service queues as many different priority 
levels are, shown in Figure 6.3. And it distinguishes the 
system time into three components: remaining service time 
of current customer under service, busy period of the higher 
priority queues and service time of the given customer. The 
moments of the busy period are: 
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  The next step after single node study, we will add 
priority into our existent fab queueing network simulator 
with re-entrant process flows, and observe the performance 
between each type with different priorities, then verify its 
simulation results. 
 
四、結論與成果 
 In the second year of research, ordinal optimization 
(OO) has been combined with simulation-based policy 
iteration (PI) into an OOBPI algorithm. The OOBPI 
algorithm exploits simulation observations that a good 
enough selection among admissible decisions of each state 
needs only a relatively rough estimation of the cost-to-go 
function (CTG) values by simulation. Convergence of 
OOBPI to optimality can be achieved by properly setting, at 
each iteration, the requirement for probability of correctly 
selecting the best controls for individual states.  Simulation 
studies have demonstrated the potential of OOBPI in 
computation efficiency and optimality. In developing a 
simulator of semiconductor wafer fabrication with 
differentiated services, we have incorporated priority service 
discipline into the simulator.   
 On-going research efforts are: 



(1) exploration of possible extension of OOBPI to general 
dynamic programming,  

(2) combination of OOBPI with the fab simulator to study 
dynamic composition of production schedules for fabs, 

(3) development of an empirical fab behavior model that 
describes how fab capacity allocation and priority 
scheduling affects fab performance and variability. 
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Fig 2.1 Policy accuracy vs. 1-CTG estimation accuracy    

 

 
Fig 2.2 CPU time vs. Estimation accuracy *β    

 



 
Fig 5.1 *P  vs optimal policy accuracy 

 

 
Fig 5.2 *P vs simulation time 
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Fig 5.3 simulation time of OOBPI vs. SBPI  

 
 

Enter → 1 → 2 → 3 → 8 → 10 →
1 → 2 → 6 →
1 → 2 → 3 → 8 → 9 →
1 → 2 → 3 → 8 → 10 →
1 → 6 → 11 → 1 → 2 → 5 →
1 → 2 → 3 → 8 → 9 →
1 → 2 → 3 → 8 → 10 →
1 → 6 → 11 → 1 → 2 → 5 →
1 → 2 → 3 → 8 → 9 → 10 → 11 →
1 → 2 → 4 → 8 → 3 →
1 → 2 → 7 → 8 → 10 →
1 → 2 → 12 → Exit

 
Figure 6.2: Process Flow of FAB1 

 
 
 
 

Product Number of 
Operations

Process Routing Sequence 

1 8   1, 2, 4, 2, 9, 10, 11, 13 
2 9   1, 2, 5, 2, 8, 9, 10, 11, 13 
3 9   1, 2, 6, 4, 2, 9, 12, 11, 13 
4 9   1, 2, 7, 4, 2, 9, 10, 11, 13 
5 8   1, 2, 4, 12, 2, 9, 2, 13 
6 8   1, 2, 5, 12, 2, 9, 7, 13 
7 8   1, 2, 6, 12, 2, 8, 2, 13 
8 12   1, 2, 3, 7, 4, 12, 2, 8, 6, 9, 2, 13 
9 13   1, 2, 3, 5, 4, 6, 12, 2, 8, 2, 10, 6, 13

10 13   1, 2, 3, 6, 2, 4, 12, 7, 2, 9, 11, 5, 13

Table 6.1     Product Routing Sequence of FAB2 

 

MG # of 
Machines

Service Time 
Distribution 

MPT 
(hr/lot)

Utilization 
%* 

1 1 Uniform 0.78 78.0 
2 1 Uniform 0.25 62.5 
3 1 Erlang Order 2 1.667 50.0 
4 1 Exponential 1.057 74.0 
5 1 Erlang Order 3 1.700 68.0 
6 1 Erlang Order 4 0.950 57.0 
7 1 Uniform 1.775 71.0 
8 1 Uniform 1.875 75.0 
9 1 Erlang Order 2 1.175 94.0 

10 1 Erlang Order 3 1.800 72.0 
11 1 Exponential 1.430 71.5 
12 1 Erlang Order 4 0.750 52.5 
13 1 Uniform 0.870 87.0 

* Utilization % = 100
#

))((#1.010

1
∑

=
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
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Table 6.2   Machine Group Data of FAB2 
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 Figure 6.2: Priority Open Queueing Network (Fab 

Example) 
 

 
Figure 6.3  GI/G/1 Special Service Queue 

 


