
行政院國家科學委員會專題研究計畫 期中進度報告

子計畫三:結合模擬與排序佳化法的生產排程及其應用於12

吋晶圓製造之研究(2/3)

計畫類別：整合型計畫

計畫編號：NSC93-2213-E-002-043-

執行期間：93年08月01日至94年07月31日

執行單位：國立臺灣大學電機工程學系暨研究所

計畫主持人：張時中

計畫參與人員：林偉誠、何元祥、于宗源、賴加將、廖祐楷、廖柏鈞、陳俊宏

教授、謝博偉博士

報告類型：精簡報告

報告附件：出席國際會議研究心得報告及發表論文

處理方式：本計畫可公開查詢

中 華 民 國 94年6月5日

結合模擬與排序佳化法的生產排程及其應用於12 吋晶圓製造之研究(2/3)
Research on Simulation-based Ordinal Optimization Methods with

Applications to Production Scheduling of 300mm Foundry Fabs (2/3)

 計 畫 編 號： NSC93-2213-E-002-043
主 持 人： 張時中教授

 計畫參與人員： 林偉誠、何元祥、于宗源、賴加將、廖祐楷、
廖柏鈞、陳俊宏教授、謝博偉博士

執行期限：93 年8 月1 日至94 年7 月31 日
執行單位：國立臺灣大學電機工程學系暨研究所

中文摘要
本計畫三年的目標﹕(1) 為排序佳化模擬設計削減

搜尋空間的新方法，(2) 將方法開發成工具模組，作為
整合系統佳化平台的一部份，(3) 將模擬進行排序佳化
應用在次世代半導體廠的有效生產排程。第一年中我們

以平穩(Stationary)馬可夫決策問題為載具，提出模擬排
序策略疊代(OOBPI) 的構想，利用策略疊代的架構，以
模擬排序佳化來估算每一狀態的cost-to-go 函數值與最
佳決策。初步模擬結果顯示這個構想的計算效能較傳統

模擬為基礎的策略疊代法可快十倍。
第二年中我們完成OOBPI演算法的設計，包括方法

理論、收斂分析、數值驗證及推展至一般動態規化的初

探。在半導體晶圓生產模擬器方面，我們加入產品優先

序之考量，以模擬半導體廠具有不同優先次序之生產排

程。目前正結合OOBPI方法與半導體晶圓生產模擬器進
行生產排程組合選擇的研究。

關鍵詞: 排序佳化、策略疊代、演算法設計、生產模
擬、產品優先序、生產排程

Abstract

The three-year research objectives of this project are
(1) to design search space reduction methods for simulation-
based ordinal optimization (OO), (2) to develop these
methods into tool modules as part of an integrated system
optimization platform, and (3) to apply simulation-based OO
to effective production scheduling of 300mm foundry fabs.
In the first year, we considered the class of Stationary
Markov decision problems as the conveyer problem. We
proposed an idea of OO-Based Policy Iteration (OOBPI) to
handle the combinatorial complexity of decisions over the
time axis. Utilizing the framework of policy iteration, we
approximate the optimal cost-to-go and optimal decision of
each state by simulation-based OO. Preliminary numerical
studies indicated one order of speed-up of OOBPI over the
traditional simulation-based policy iteration.

In the second year, we have completed the design of
OOBPI algorithm, including the theories for the method,
convergence analysis, simulation study and exploration of
possible extension to general dynamic programming. In

developing a simulator of semiconductor wafer fabrication
with differentiated services, we have incorporated priority
service discipline into the simulator. We are now combining
OOBPI with the fab simulator to study dynamic composition
of production schedules for fabs.

Key words: Ordinal Optimization, Policy Iteration,
Algorithm design, Fab Simulator, Priority, Production
Scheduling

二、計畫緣由與目的
Ordinal optimization (OO) is an emerging approach for

efficient optimization of complex systems. Instead of
finding the optimal solution, ordinal optimization selects a
good enough solution from a subset of options from the
design space based on a certain criteria and a specified
confidence level. The principle investigator (PI) of this
proposal has conducted research on applying simulation-
based OO and optimal computing budget allocation (OCBA)
to scheduling semiconductor wafer fabrication. Motivated
by the findings of previous research and based on the
foundation established, the PI considers simulation-based
OO of good potential for good enough and efficient
production scheduling/dispatching of next generation fabs,
where the problem complexity and the need for optimization
are much higher than those of current fabs.

The PI has been is performing a research under NSC
support on search space reduction by combining design of
experiment (DOE) and simulation-based OO (OODOE). In
this three-year research project, the PI will adopt the salient
production scheduling/dispatching problems of 300mm
foundry fab as the conveyers and continue to advance his
research in both design of new methods and applications
to production. Specific objectives are
(1) to design search space reduction method for simulation-
based OO, (2) to develop these methods into tool modules as
part of an integrated system optimization platform, and to
apply simulation-based OO to effective production
scheduling of 300mm foundry fabs.

In the first year, we considered the class of Stationary
Markov decision problems as the conveyer problem. We
proposed an idea of OO-Based Policy Iteration (OOBPI) to
handle the combinatorial complexity of decisions over the
time axis. Utilizing the framework of policy iteration, we
approximate the optimal cost-to-go and optimal decision of
each state by simulation-based OO. Preliminary numerical
studies indicated one order of speed-up of OOBPI over the
traditional simulation-based policy iteration.

1. 第二年目的

In the second year, our objectives have been on
(1) the complete design of OOBPI algorithm, including the

theories for the method, convergence analysis,
simulation study and exploration of possible extension
to general dynamic programming, and

(2) the development of a simulator of semiconductor wafer
fabrication with differentiated services,

(3) combination of OOBPI with the fab simulator to study
dynamic composition of production schedules for fabs.

三、研究方法

Part I: Design and Analysis of the OOBPI

Algorithm

2. Simulation-based Policy Iteration (SBPI)

Markov Decision Problem (MDP) is one class of
stochastic optimal control problems [1,2,3]. A MDP is
characterized by states, controls, state transition
probabilities, transition costs, and decision horizon. In this
paper, we consider a stationary MDP with finite controls and
states. To formulate the problem, let us define some
notations first.
Notations:

 : Discount factor, []0,1α ∈ ;

S : Set of states;
I : State index, i S∈ ;
U : Set of controls;
u : Control index, u U∈ ;
()iU : Set of admissible controls at state i , ()U i U□ ;
T : Decision Time horizon;
 : Policy, a function mapping form state space to

control space, S C;
t : Index of time epoch, when a state transition

occurs, t=1,…,T;

tu : Control at time t , and ()t tu iπ= ;

ti : State at time t ;

t : Randomness outcome at time t with tω ∈Ω , ;t∀

f(.,.,.) : State transition function, × ×Ω →sS U S ;
Si : Set of states that can be reached one transition

from state i;
{ }ti : A realization of stat trajectory ti , 1, 2,t = K ;

pij(u) : Transition probability from state ito state

j under control u;
(), , , tg i u j ω : transition cost from state i to state j under

control u with an outcome t

In the MDP, the transition cost function (), ,g i j ω and
the transition probability pij(u) have to be estimated via
Monte-Carlo simulation. Given a stationary policy π , the
discounted expected cost-to-go (CTG) of an initial state i is
defined as

() ()
1

1 0
0

lim , , |
T

t
w t t tT t

J i E g i i i iπ α ω
−

+→∞ =

 = ⋅ = 
 
∑

(2.1)
The state transition is described by

()1 , (),t t t ti f i iπ ω+ = , t= 0,1,2,… , (2.2)
where t’s are i.i.d. The stationary MDP (SMDP) of this
paper is then
 ()0 0min subject to (2.2) for any ∈J i i Sππ

 (2.3)

2.1 SBPI algorithm
In the literature, Cooper et. al. [4] have proposed a

simulation-based policy iteration (SBPI) algorithm to solve a
stationary MDP problem with minimizing the average
transition cost as the objective. Their SBPI algorithm is
described as follows.

SBPI consists of two steps: policy evaluation and
policy improvement. The policy evaluation step performs a
one-step analysis that estimates the effect of each admissible
control 0()u U i∈ by using the control u for 0t = while
assuming a given policyπ for 1t ≥ . Given a stationary policy
 and an initial state i, the policy iteration step first runs
Monte-Carlo simulation to obtain N sample paths of length
T. The cost-to-go under policy  can be estimated by
simulation as

() ()
1

1 1
1

ˆ , 1 , , ,
T

t
t t t t

t
J i i T g i u iπ α ω

−

+
=

= − ≡ ⋅∑ω (2.4)

where  = {t, t=1,…,T-1} and { }, 1,..., 1ti t T= − is a
sample state trajectory generated according to state equation
(2.2). Then define a one-step CTG (1-CTG) as

() () ()0
ˆˆ (| , ,) [, , , ,]

i

ij
j S

r i u T p u g i u j J j Tπ πω α
∈

≡ ⋅ + ⋅∑ω ω (2.5)

and ()ijp u is either known a priori or estimated from
simulation. The time horizon parameter T will be omitted in
our later discussions for notational simplicity.

Let the sample mean and variance of the1-CTG

be ()ˆ | ,E r i uω π  ω and ()2
ˆ | ,r i uω πσ   ω respectively. The

95% confidence interval of the sample mean [12] can be

approximated by ()() ()2
ˆ | ,

ˆ | , 1.96 ,
r i u

E r i u
N

ω π
ω π

σ    −



ω
ω

()() ()2
ˆ | ,

ˆ | , 1.96
r i u

E r i u
N

ω π
ω π

σ    +



ω
ω .

Define a simulation accuracy index

β ≡1.96
()2

ˆ | ,r i u

N

ω πσ   ω
/ ()()ˆ | , 100%E r i uω π ×ω , (2.6)

which implies that the simulation is stopped when the half-
length of the 95% confidence interval over the center point
is less than β. It is intuitively clear that the larger the N, the
smaller the β and the higher accuracy of ()ˆ | ,E r i uω π  ω .

The policy improvement step updates the policy by
selecting for each state the best control among all admissible
controls of the state based on their sample means of 1-CTG.
The policy evaluation and policy improvement steps iterate
till the policy stays the same from one iteration to another.
SBPI Algorithm
Step (s1). Initialization

Input an initial policy 0π , a simulation accuracy index
*β , initial number of simulation replications N0, and

an incremental number of simulation replicationsτ ;
k = 0;

Step (s2). Policy Evaluation
 For every state i S∈

For every admissible control ()u U i∈

2.1 Set N= N0 and π = kπ ;
2.2 Simulate ˆ (| ,)r i uπ ω for N replications, each

with T time epochs, and compute

 ()ˆ | ,E r i uω π  ω and ()2
ˆ | ,r i uω πσ   ω ;

2.3 If

2

*

ˆ (| ,)
1.96

ˆ (| ,)

r i u
N

E r i u

ω π

ω π

σ

β

  ⋅
≤

  

ω

ω
, go to step

(s3);
2.4 Simulate additionalτ replications;

N N τ= + , go to step 2.2;
Step (s3). Policy Improvement

For every state i S∈

()
(){ }1 ˆarg min (| ,)k

u U i
i E r i uω ππ ω+

∈
∈    .

Step (s4). Iteration
If 1k kπ π+ = , then output kπ and stop.
Otherwise, set 1k k= + and go to step (s2)

The main challenge of SBPI is that with Monte-Carlo
simulation, ()()ˆ | ,E r i uω π ω converges slowly at rate

1O
N

 
 
 

 [6, 7]. The total simulation time can be

prohibitively expensive if we want to have an accurate
estimation of CTG in policy evaluation. However, it is
unclear in SBPI how the accuracy of 1-CTG estimation
affects the identification of the best admissible control of
each state, i.e., how it affects the policy improvement.

2.2 Simulation Study of SBPI
 To investigate the relationship between the estimation
accuracy (EA) of CTG and the accuracy of identifying the
best control of each state, i.e., policy accuracy (PA), we
perform a simulation study of SBPI. We design a study
example of discounted stationary MDP with 4 states, 10

admissible controls for every state and =0.9, where the
state transition probabilities are randomly generated. Let us
first define PA of SBPI.
Definition 2.1 Policy accuracy (PA) of SBPI
Consider applying SBPI to run over N replications of the
example MDP. Let *ˆnπ be the control policy obtained by

SBPI from the nth replication and *π the optimal control
policy of the MDP. Define a score function

* *ˆ1, () (), every ;
()

0,otherwise.
n

n
if i i for i S

I i
π π = ∈

= 


 (2.7)

The PA of SBPI is then

1

1 1[()]
| |

N

n
n i S

PA I i
N S= ∈

≡ ∑ ∑ . (2.8)

We then run SBPI over 100 replications of the

example MDP and vary the EA requirement, i.e., β∗ . Fig 2.1
shows how PA varies with β∗  , where PA degrades with
the increase of β∗  .in an approximate rate of 0.68. Fig 2.2
shows the CPU time needed to obtain the required EA, β∗  ,
of 1-CTG. Note that the CPU time decreases rapidly with
the increase of β∗  .For example, when β∗  is relaxed from
1% to 7%, the PA decreases from 99% to 84% while the
CPU time needed decreases from 38 to 10 seconds. Such
results indicate that relaxing EA requirement for 1-CTG
estimation by simulation still leads to reasonably good PA
but may largely reduces the computation time.

3. Ordinal Optimization-based Policy Iteration
(OOBPI) Algorithm
 The simulation study of SBPI in Section 2 indicates
that a good policy accuracy can be achieved at relatively
loose accuracy of the 1-CTG estimation by simulation. A bit
sacrifice of PA may lead to significant reduction of
simulation time in estimating the 1-CTG of each admissible
control for a given state. The identification of the best
control for each state essentially ranks individual controls in
an ascending order of the 1-CTG estimates. Such
observations motivate our combination of ordinal
optimization [5] with SBPI into a new and efficient method
for solving SMDP.
 By exploiting the ordinal optimization concept, the key
design idea of the OOBPI algorithm lies in replacing the EA
requirement in the policy evaluation step of SBPI with a
lower bound criterion on the probability of correct ranking
among controls. That the top-ranking control obtained by
simulation for a state is actually the best control for the state
is defined as the event of correct selection (CS). In each
iteration of OOBPI, the simulation for 1-CTG estimation
over all the admissible controls of a state stops once a good
enough control is identified, i.e., probability of CS ≡ P{CS}
> p*, where p* is a pre-specified probability. Theory of
ordinal optimization says that P{CS} converges
exponentially with respect to the number of simulation
replications, N, while the EA of SBPI converges slowly at

rate 1O
N

 
 
 

 [6, 7]. So, adoption of OO in each iteration

may lead to a good enough policy improvement at a

moderate p* requirement. The good enough policy
improvement in turn may get the estimated 1-CTG closer to
the optimal CTG in the next iteration. Computation
efficiency may thus be expected.

 In specific, the OOBPI design applies the theoretic
results of OO as follows.

Theorem 1 Exponential Convergence of P{CS}
Suppose the simulation replications for each control are i.i.d.
and the simulation replications between any two admissible
controls are independent. Assume that ()ˆ | ,r i uπ ω has a
finite moment generating function. Then P{CS} converges to
one exponentially. More specifically, there are α > 0 and β
> 0 such that P{CS} ≥ 1 - αe-βN.
Proof: Theorem 5.1 of [8].

While the confidence probability P{CS} could converge
at an exponential rate, a critical issue in applying it to
ordinal optimization is the estimation of the P{CS} itself.
Using a Bayesian model, [13] developed an lower bounding
technique to P{CS} when the number of designs is large.
Theorem 2 Lower Bound Approximation of P{CS}
Let ()()ˆ | ,E r i uω π ω , u∈ Si, denote the random variable
whose probability distribution is the posterior distribution of
the expected performance for control u under a Bayesian
model. A lower bound to P{CS} for a state i can be
calculated as,

Pi{CS}≥ ()() ()()
(),

ˆ ˆ{ | , | , }
u U i u b

P E r i b E r i uω π ω πω ω
∈ ≠

<∏ 

≡Approximate Probability of Correct Selection for state i
(APCS(i)), (3.1)

where b is the control with minimum ()()ˆ | ,E r i uω π ω among

all u∈ Si.
Note that the computation of APCS is simply a product of
pairwise comparison probabilities, which is simple to
compute. Assume that (), , , tg i u j ω be independent among
all state pairs (i,j) and be i.i.d over time with mean and
variance ()2,ij ijµ σ . Then according to the central limit

theorem, ()ˆ ,J i Tπ in Eq. (2.4) and the 1-CTG ()ˆ | ,r i uπ ω
are can be approximated by random variables of normal
distributions.

Let ()ˆ | ,r i uπ ω ~ ()() ()()2
ˆ ˆ| , , | ,E r i u r i uωω π πω σ ω Ν   ,

the pairwise comparison probability in APCS(i)
()() ()()ˆ ˆ{ | , | , }P E r i b E r i uω π ω πω ω<

() ()
() ()2 2

ˆ ˆ| , | ,

ˆ | , | ,

E r i u E r i b

r i u r i b
N N

ω π ω π

ω π ω π

ω ω

σ ω σ ω

 
 

   −    = Φ 
       + 

 

, (3.2)

where Φ is the standard normal accumulative distribution.
APCS for a state i is therefore

() ()() ()()
(),

ˆ ˆ{ | , | , }
u U i u b

APCS i P E r i b E r i uω π ω πω ω
∈ ≠

= <∏

() ()
() ()() 2 2,

ˆ ˆ| , | ,

ˆ ˆ| , | ,u U i u b

E r i u E r i b

r i u r w i b
N N

ω π ω π

ω π ω π

ω ω

σ ω σ∈ ≠

 
 

   −    = Φ 
       + 

 

∏ (3.3)

According to [13], APCS should provide a good
approximation to P{CS}. It is therefore adopted in OOBPI
for calculating a lower-bound of the probability that the top-
ranking control by simulation is indeed the optimal control
for the state.

The detailed OOBPI algorithm is summarized as
follows:
OOBPI Algorithm
Step O1: initialization.

Input an initial policy 0π , a simulation confidence level
of correct selection *P , and an incremental number of
simulation replicationsτ ;
k = 0;

Step O2: Policy evaluation
 Set N= N0, and   kπ ;
 O2.1 For every state i S∈

For every admissible control ()u U i U∈ ⊂
O2.2 Simulate ˆ (| ,)r i uπ ω for more replications, each

with T time epochs;

Compute ()ˆ | ,E r i uω π  ω and ()2
ˆ | ,r i uω πσ   ω ;

Step O3: Policy improvement
O3.1 Find the optimal control b based on estimated 1-

CTG,

i.e.
()

(){ }ˆarg | ,
u U i

b Min E r i uω π∈
 ≡  ω ;

O3.2 Calculate ()APCS i according to (3.3);

O3.3 Check if () *APCS i P> for all i, then

()1k i bπ + = and stop,
Else set N N τ= + ,

go to Step O2.1;
Step O4: Iteration

If 1k kπ π+ = , then stop and set * kπ π= ;
otherwise k = k+1 and return to Step O2.

The major differences of OOBPI with respect to SBPI lie in
steps O3.2 and O3.3. The primary objective of OOBPI is to
identify good admissible controls that perform relatively
better than others rather than to accurately estimate the cost-
to-go for all controls under consideration.

3. Convergence Analysis of OOBPI

 In this section, we shall provide easily-verifiable
sufficient conditions under which the OOBPI algorithm
converges asymptotically to an optimal policy. The
sufficient conditions are derived by utilizing the
convergence analysis of SBPI [4] and a P{CS}
approximation technique in the ordinal optimization context
[14]. There are four steps in the derivation:

i) conversion of SBPI for an MDP problem with a
discounted objective function to SBPI for an equivalent
MDP problem with an objective of average reward;

ii) derivation of sufficient conditions on number of
simulation replications under which SBPI converges in
application to the MDP problem with an objective of
average reward by exploiting the result of [10];

iii) establishment of the relationship between a lower bound
of P{CS} and the number of simulation replications per
iteration;

iv) derivation of P{CS} requirements under which OOBPI
 converges asymptotically.

 Detailed analysis and derivation are as follows.
i) Conversion of SBPI for discounted to average reward
In a stationary MDP, the average reward for state i under

policy  is defined as

() ()
1

1 0
0

1lim , (), , |
T

t t t tT t
v i E g i i i i i

Tπ ω π ω
−

+→∞ =

 = = 
 
∑ (4.1)

The discounted reward in (2.1) and the average reward then
have the following relationship:

1() (),
1

J i v i i Sπ πα
= ∀ ∈

−
 (4.2)

It can be shown that by replacing ()ˆ | ,r i uπ ω in (2.5) with

(1-α)  ()ˆ | ,r i uπ ω , the SBPI finds the optimal policy for the
corresponding MDP with average reward.
ii) Sufficient convergence conditions of SBPI
In the convergence analysis of BPI for SMDP problems with
an objective of average reward, Cooper et al. provided a
sufficient convergence of SBPI [4].
Proposition 1 (Proposition 5.5 of [4])
Let Nk, k=1, 2,…, be the number of simulation replications in
iteration k of SBPI for SMDP problems with an objective of
average reward. If

0

1
k kN

∞

=

< ∞∑ ,

then the SBPI converges to an optimal policy with
probability one.
 Proposition 1 states that the simulation replications per
iteration must grow “fast enough” as SBPI iterates to
converge to the optimal policy. One simple example of such
sequences is { } { }0

k
kN n= , where n0 is an integer and n0 > 1.

In this case, 0

0 0

1
1k k

n
N n

∞

=

= < ∞
−∑ .

iii) Relationship between number of simulation replications
and probability of correct selection
We now establish the relationship between the number of
simulation replications kN and Pi{CS} of the best control for
state i based on the sample mean and variance of the 1-CTG,

()ˆ | ,E r i uω π  ω and ()2
ˆ | ,r i uω πσ   ω . From [14], APCS in

Eq. (3.3) asymptotically approaches
()∏
≠∈

−
buiUu

kNi
),(

)),(exp(1 πλ (4.3)

where ()
2
,

2 2

(,)
(,)

2 (,) (,)
b u

b u

i
i

i i

δ π
λ π

σ π σ π
=

+
,and , (,)b u iδ π =

()ˆ | ,wE r w i uπ   - ()ˆ | ,E r i bω π ω   .

Let *
kP be the simulation confidence level of correct

selection for iteration k, be an upper bound to  (,)iλ π for

all  and I, and ()| | 1* 1 .k
sN

kP e ν −−= − In one iteration of

OOBPI, *
kP should be set so that at least Nk replications are

run for each state i to achieve

APCS(i) ≥ () 1||* 1
−−−=

sN
k

keP ν (4.4)
That is

Nk = 







−

−
−)1|(|

1
*)(1ln1 s
kP

ν
. (4.5)

iv) Sufficient convergence conditions of OOBPI
It is desirable that sufficient condition setting of { *

kP } for
OOBPI convergence does not require a prior statistics of the

MDP. To ensure that
k

k

N
N 1+ = n0, { *

kP } is determined by

applying Eq. (4.4) and we have

k

k

N
N 1+ =









−

−









−

−

−
+

−

)1|(|
1

*
1

)1|(|
1

*

)(1ln1

)(1ln1

s
k

s
k

P

P

ν

ν
 = n0. (4.5)

Thus,

 =+
*

1kP 1||)1|(|
1

*)(11 −−


















−− ss

kP . (4.6)

Theorem 3: Sufficient Convergence Conditions of
OOBPI
Let *

kP be the confidence level of correct selection for
iteration k, 0< *

kP <1 and { *
kP } satisfies Eq. (4.6). Then

OOBPI converges to the optimal policy with probability
one.
Proof: To achieve *

kP by OOBPI at iteration k, it requires
at least kN simulation replication for each state i and
{ kN } satisfies the sufficient convergence conditions of
SBPI.

5. Simulation Study

Now we perform simulation study of OOBPI over two
stationary MDP examples. The first example is the same as
that in Subsection 2.2 and the second example is a
replacement problem taken from [15], which has 40 states,
41 admissible controls per state and the discount factor
   Relationship among the setting of  P{CS} for
estimation of 1-CTG by simulation, policy accuracy and
computation time is the key of this study.

Although SBPI and OOBPI are different in the accuracy
setting for 1-CTG estimation by simulation, simulation
results of the two algorithms are still put in referential
contrast. We set    for SBPI to get the optimal policy for

each example.
In the evaluation of SBPI, various  values are used but it
stays a constant among iterations in one run. We set

()* 65 5 %kP k= + ⋅ for OOBPI, where *
kP tightens up the

accuracy as the iteration goes.
In the simulation study over example 1, within the

policy accuracy (PA) range of 85%~98%, the
corresponding *

kP ranges from 70%~85% as depicted in Fig
5.1. The CPU time of SBPI increases from 4.2 seconds to
12.4 seconds in this PA range (Fig 2.2) while the
corresponding CPU time range of OOBPI is 1.1 secs ~4.2
secs (Fig 5.2).

In the simulation study over example 2, Fig 5.3 shows
the CPU time of each iteration of SBPI and OOBPI. The last
item in Fig 5.3 is the total CPU time to reach an optimal
policy. We find CPU time of each iteration in SBPI is almost
the same. This is because we select a fixed β . The CPU
time of OOBPI increases as it iterates. This is
because *

kP increases as iteration increases. Note that in this
study, *

0P can be very loose at the initial iteration but still
leads to convergence to the optimal policy. By comparing
the performance of OOBPI over examples 1 and 2, we can
also observe that as the MDP size increases, OOBPI may
have good advantage in both efficiency and optimality.

6. Fab Simulator with Priority Queues

We enhance the Fab simulator developed by Hu and
Chang [21] with priority queueing disciplines. Two fab
models are considered: FAB1 and FAB 2.
6.1 FAB1 and FAB2 Models

FAB1 is adopted from an aggregated full-scale
production line previously studied by [17]. This model
consists of 60 production stages, 12 different machine
groups and a total of 40 machines. There is only one part
type. Its sequence of processing steps and the machine
group used by each step are given in Figure 6.1. Machines
are subject to random failures, and each failed machine
requires a random repair time. All the times to failure, times
to repair, and processing times have exponential
distributions with various values of mean time to failure
(MTTF), mean time to repair (MTTR) and mean processing
time (MPT).

FAB2 closely follows the model of [18], which is based
on real life data and models the production facility of a
semiconductor company. This model is represented by 13
different machine groups with jobs of 10 product families
and the job class mix ratio is set as γi = 0.1 for i = 1, …,10.
The last process steps of all the products will finish at MG
13. Its sequence of processing steps and the MG used by
each step are given in Table 6.1. Table 6.2 lists the basic
information of the model. Note that different machine
groups have different processing time distributions in this
FAB2 model.

6.2 Addition of Priority Queue to Simulator

The simulator in existence can simulate the situation for
multiple part types manufactured by different machine
groups, and consider deterministic re-entrant process flows.

But in practice, each part types maybe has different priority
to manufacture. Addition of priority queue to simulator is
divided into two parts, one is single node study, and the
other is fab queueing network study, as Figure 6.2.

 In the first step, we add priority into the system which
has single server and two priority part types called M/M/1
non-preemptive priority queue. We compare the simulation
results with the analysis results [19], and observe the
covariance between priorities. The arrival and service
process of each types are not always exponential distribution
in real world, so we will simulate the general situation, and
replace M/M/1: PR queue by GI/G/1: PR queue.

 In the research of GI/G/1: PR queue, we surveyed many
papers and find out the analysis results from [20]. In that
paper, the priority queue is converted to as many separated
G/G/1-Special Service queues as many different priority
levels are, shown in Figure 6.3. And it distinguishes the
system time into three components: remaining service time
of current customer under service, busy period of the higher
priority queues and service time of the given customer. The
moments of the busy period are:

((()))

1A j iE R C S
α

α
α

α

ρ
= τ

− ρ
 (6.1)

(()) ()
1

E R N E N α
α α α

α

τ
= ⋅

−ρ
 (6.2)

2 2 22 2

2

3 2

(1)()
((()))

(1) (1)
j jSj S A

A j

cc c
E R C S αα α

α

α α

α

α α

ρ τ +τ τ ρ +
= +

− ρ − ρ

 (6.3)

2 2 2

 2 2
 2 3

()
(()) () ()

(1) (1)
S Ac c

E R N E N E N α αα αα
α α α α

α α

τ + ρτ
= ⋅ + ⋅

− ρ − ρ

 (6.4)

 The next step after single node study, we will add
priority into our existent fab queueing network simulator
with re-entrant process flows, and observe the performance
between each type with different priorities, then verify its
simulation results.

四、結論與成果
 In the second year of research, ordinal optimization
(OO) has been combined with simulation-based policy
iteration (PI) into an OOBPI algorithm. The OOBPI
algorithm exploits simulation observations that a good
enough selection among admissible decisions of each state
needs only a relatively rough estimation of the cost-to-go
function (CTG) values by simulation. Convergence of
OOBPI to optimality can be achieved by properly setting, at
each iteration, the requirement for probability of correctly
selecting the best controls for individual states. Simulation
studies have demonstrated the potential of OOBPI in
computation efficiency and optimality. In developing a
simulator of semiconductor wafer fabrication with
differentiated services, we have incorporated priority service
discipline into the simulator.
 On-going research efforts are:

(1) exploration of possible extension of OOBPI to general
dynamic programming,

(2) combination of OOBPI with the fab simulator to study
dynamic composition of production schedules for fabs,

(3) development of an empirical fab behavior model that
describes how fab capacity allocation and priority
scheduling affects fab performance and variability.

Publications supported by this project
1. T.-K. Hwang, S-C. Chang, W.-L. Jan, “Properties of
Iterative Proportional Capacity Allocation for Re-entrant
Line Operations,” Proceedings of APIEMS, Gold Coast,
Australia, Dec. 13-15, 2004.
2. S.-C. Chang, C. H. Chen, M.-C. Chang, Y.-H. Ho,
“Design of Ordinal Optimization-based Policy Iteration,”
submitted to IEEE Conference on Decision and Control,
Dec. 2005.
3. W.-C. Lin, S.-C. Chang, “Hybrid Algorithms for Satellite
Imaging Scheduling,” submitted to IEEE Transactions on
Systems, Man and Cybernetics, May 2005.

五、參考文獻

[1] M. L. Puterman, Markov Decision Process, John Willy &

Sons, Inc., NY, 1994.
[2] D. Bertsekas, and J. N. Tsitsiklis, Neuro-Dynamic

Programming, Athenas, 1996.
[3] Y. He, Michael C. Fu, and Steven I. Marcus, “A Simulation

Based-Policy Iteration for Average Cost Unichain Markov
Decision Process” in OR Computing Tools for the New
Millennium, M. Laguna and J. Velarde, editors, Kluwer
Academic Publishers, 2000, pp. 161-182,

[4] W. Cooper, S. Henderson, and M. Lewis, "Convergence of
Simulation-Based Policy Iteration", Probability in the
Engineering and Informational Sciences, Vol. 17(2), 213-234,
2003.

[5] Y. C. Ho, R. S. Sreenivas, and P. Vakili, "Ordinal Optimization
of DEDS," Journal of Discrete-event Dynamic Systems, Vol.2,
No.2, pp. 61-88, 1992.

[6] V. Fabian, Stochastic Approximation, Optimization Methods in
Statistics, Edited by J. S. Rustagi, Academic Press, New York,
1971.

[7] H. J. Kushner, and D. S. Clark, Stochastic Approximation for
Constrained and Unconstrained Systems, Springer-Verlag,
1978.

[8] L. Dai, "Convergence Properties of Ordinal Comparison in the
Simulation of Discrete-event Dynamic Systems," Journal of
Optimization Theory and Applications, Vol. 91, No.2, pp. 363-
388, November 1996.

[9] L. Dai, and C. H. Chen, "Rate of Convergence for Ordinal
Comparison of Dependent Simulations in Discrete-event
Dynamic Systems," Journal of Optimization Theory and
Applications, Vol.94, No.1, July, 1997.

[10] B.-W. Hsieh, C.-H. Chen, S.-C. Chang, “Scheduling
Semiconductor Wafer Fabrication by Using Ordinal
Optimization-based Simulation,” IEEE Trans. on Robotics
and Automation, Oct ,2001.

[11] B.-W. Hsieh, S.-C. Chang, C.-H. Chen, “Efficient Selection of
Scheduling Rule Combination by Combining Design of
Experiment and Ordinal Optimization-based Simulation,”
Proceedings of ICRA2003, Taipei, Sept., 2003.

[12] S. M. Ross, A First Course in Probability. Englewood Cliffs,
NJ:Prentice-Hall, 1984.

[13] C. H. Chen, "A Lower Bound for the Correct Subset-Selection
Probability and Its Application to Discrete-event System
Simulations," IEEE Transactions on Automatic Control, Vol.
41, No. 8, pp. 1227-1231, August, 1996.

[14] C.H. Chen, H. C. Chen, and E. Yucesan,” Computing Efforts
Allocation for Ordinal Optimization and Discrete Event
Simulation,” IEEE Transactions on Automatic Control, May
2000.

[15] R. A. Howard, Dynamic programming and Markov Processes,
Technology Press of Massachusetts Institute of Technology,
1960.

[16] Averill M. Law, and W. David Kelton, Simulation Modeling
and Analysis, McGraw-Hill, 1991.

[17] S. H. Lu, D. Ramaswamy, and P. R. Kumar, "Efficient
Scheduling Policies to Reduce Mean and Variance of Cycle-
Time in Semiconductor Manufacturing Plants, " IEEE
Transactions on Semiconductor Manufacturing, Vol. 7, No. 3,
August 1994.

[18] Bitran, G. R. and D. Tirupati, “Multiproduct queueing
networks with deterministic routing: decomposition
approach and the notion of interference,” Management
Sci., 34 (1988), 75-100.

[19] D. Gross and C. M. Harris, “Fundamentals of Queueing
Theory”

[20] G. Horvath, “Approximate Waiting Time Analysis of
Priority Queues”.

[21] M.-D. Hu, S.-C. Chang, “Translating Overall Production
Goals into Distributed Flow Control Parameters for
Semiconductor Manufacturing,” Journal of Manufacturing
Systems, Vol. 22, No. 1, 46-63, 2003.

Fig 2.1 Policy accuracy vs. 1-CTG estimation accuracy  

Fig 2.2 CPU time vs. Estimation accuracy *β

Fig 5.1 *P vs optimal policy accuracy

Fig 5.2 *P vs simulation time

simulation time of each iteration

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9

iteration

si
m
ul
at
io
n
ti
m
e(
s)

SBPI

OOBPI

Fig 5.3 simulation time of OOBPI vs. SBPI

Enter → 1 → 2 → 3 → 8 → 10 →
1 → 2 → 6 →
1 → 2 → 3 → 8 → 9 →
1 → 2 → 3 → 8 → 10 →
1 → 6 → 11 → 1 → 2 → 5 →
1 → 2 → 3 → 8 → 9 →
1 → 2 → 3 → 8 → 10 →
1 → 6 → 11 → 1 → 2 → 5 →
1 → 2 → 3 → 8 → 9 → 10 → 11 →
1 → 2 → 4 → 8 → 3 →
1 → 2 → 7 → 8 → 10 →
1 → 2 → 12 → Exit

Figure 6.2: Process Flow of FAB1

Product Number of
Operations

Process Routing Sequence

1 8 1, 2, 4, 2, 9, 10, 11, 13
2 9 1, 2, 5, 2, 8, 9, 10, 11, 13
3 9 1, 2, 6, 4, 2, 9, 12, 11, 13
4 9 1, 2, 7, 4, 2, 9, 10, 11, 13
5 8 1, 2, 4, 12, 2, 9, 2, 13
6 8 1, 2, 5, 12, 2, 9, 7, 13
7 8 1, 2, 6, 12, 2, 8, 2, 13
8 12 1, 2, 3, 7, 4, 12, 2, 8, 6, 9, 2, 13
9 13 1, 2, 3, 5, 4, 6, 12, 2, 8, 2, 10, 6, 13

10 13 1, 2, 3, 6, 2, 4, 12, 7, 2, 9, 11, 5, 13

Table 6.1 Product Routing Sequence of FAB2

MG # of
Machines

Service Time
Distribution

MPT
(hr/lot)

Utilization
%*

1 1 Uniform 0.78 78.0
2 1 Uniform 0.25 62.5
3 1 Erlang Order 2 1.667 50.0
4 1 Exponential 1.057 74.0
5 1 Erlang Order 3 1.700 68.0
6 1 Erlang Order 4 0.950 57.0
7 1 Uniform 1.775 71.0
8 1 Uniform 1.875 75.0
9 1 Erlang Order 2 1.175 94.0

10 1 Erlang Order 3 1.800 72.0
11 1 Exponential 1.430 71.5
12 1 Erlang Order 4 0.750 52.5
13 1 Uniform 0.870 87.0

* Utilization % = 100
#

))((#1.010

1
∑

=
×








i ofMachines
MPTofVisits .

Table 6.2 Machine Group Data of FAB2

Machine
Group

1

Machine
Group

2

Machine
Group

M

b1 b2

bM+1

b
J-M+1 bJ-M+2

bM+2

bM

b2M

bJ

External
Arrivals

Departures

flow of type A parts

flow of type B parts
 Figure 6.2: Priority Open Queueing Network (Fab

Example)

Figure 6.3 GI/G/1 Special Service Queue

