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For a variety of infinite-state systems,
the problem of deciding whether a given
self-stabilizing or not is
investigated from the decidability viewpoint.

system is

We develop a unified strategy through
which checking self-stabilization is shown
to be decidable for lossy vector addition
systems with states, one-counter machines,
lossy
counter machines and lossy channel systems,
in contrast, the self-stabilization problem is
shown to be undecidable.

and conflict-free Petri nets. For
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self-stabilization, verification

The notion of self-stabilization was
introduced by Dijkstra to describe a
system having the behavior that
regardless of its starting

0S Sé()nfiguration, the system would return to
S& depitemades configuretidm evesttialiyt e s

ma c hi n @%2legtimaecopfigupalion, wg Mean ¢ _ ¢ ¢ e

a configuration which is reachable from
the initial configuration of the system).
The motivation behind self-stabilization
is that a self-stabilizing system has the
ability to “correct' itself even in the
presence of certain unpredictable errors
that force the system to reach an
‘illegitimate’  configuration during the
course of its operations. In this sense,
self-stabilizing systems exhibit
fault-tolerant behaviors to a certain
degree. With the increased interest in
designing fault-tolerant systems, the
study of self-stabilization has been
gaining increasing popularity in the
computer science community lately.
Intuitively speaking, a system is said to
be self-stabilizing (ss, for short) if, regardiess
of its starting configuration, the system
would eventually return to a ‘legitimate'
configuration which is reachable from the
initial configuration of the system. That is, a



self-stabilizing system  has the ability to
“correct' itself even in the presence of certain
unpredictable errors that force the system to
reach an “illegitimate' configuration during
the course of its operations. Let S be a (finite
initial
configuration. A system is said to be

or infinite) system with c0 as its

self-stabilizing if for each configuration c,
none of the computations emanating from ¢
is non-ss. The self-stabilization problem isto
determine, for a given (finite or infinite)
system, whether the
self-stabilizing.
concern is to investigate the decidability

system is
In this paper, our man

issue of the self-stabilization problem for a
variety of infinite-state systems.

A system Sis not self-stabilizing iff
either (i) a finite computation ends up
with a dead configuration being not
reachable from the initial configuration,
or (ii) an infinite non-ss computation
exists. (i) is relatively easy to check as
long as certain properties of S are
decidable. The idea behind our approach
of checking (ii) isbuilt upon showing
that to demonstrate the  non-ss nature

of a system, it is sufficient to search
computations of
periodic behaviors, and hopefully, the
confinement to such  computations
admits a decidable checking of (ii). By
non-ss periodic computations we mean

among only non-ss

those non-ss computations of the form
s 5 e, repegting m from s
infinitely  many times witnesses non-ss.

1. (Strongly periodic:) Every

finite computation ¢ ECENGYC

with c¢'>cand c ¢ R(S, c0)
ensures non-ss of its infinite
repetition (i.e, ¢ — -,
IS NON-Ss).

2.  (Weakly periodic:) If infinite

non-ss computations exist,
there must be one of the form ¢
TATT ... )

The disparity between strongly and
weakly periodic non-ss computations is
that in the former, afinite computation of

the form ‘c—*— ¢ withc' >cand ¢

¢ R(S, c0)' is guaranteed to conclude the
system’s non-ss behavior, whereas in the
latter, however, not every finite
computation of the above form is
extendible to render ss; nevertheless,
theredoesexist  aperiodic witness.

As far as we know, very little is
known regarding the complexity of the
self-stabilization problem (i.e., the
problem of deciding whether a system is



self-stabilizing or not) for infinite-state
systems. At this moment, the best
bounds of the problem for genera
Petri nets are a lower bound of
exponential space and an upper bound
of I, (the second level of the arithmetic
hierarchy), whereas it is Il,-complete
for Turing machines. Therefore, it is of
interest and importance to take a closer
look a the problem for other
infinite-state systems, in the hope of
recognizing the key characteristics which
govern the decidability/undecidability
nature of the problem. An equaly
important goal is to, perhaps, come up
with a unified framework through which

decidability/undecidability of
self-stabilization can be obtained. In this
paper, we investigate, from the

decidability viewpoint, the problem of
deciding whether a given system is
self-stabilizing for a wide range of
infinite-state systems, including lossy
vector addition systems with states,
one-counter machines, conflict-free Petri
nets, lossy counter machines, and lossy
channel systems. As it turns out, the
decidability of self-stabilization for lossy
vector addition systems with states,
one-counter machines, and conflict-free
Petri nets can be established in a unified
setting, taking advantage of the
existence of a periodic witness for
non-self-stabilizing infinite
computations.  For  lossy
machines and lossy channel systems,
however, the self-stabilization problem
turns out to be undecidable.

counter

We have studied,
decidability viewpoint, the problem of

from the

determining whether a given system is
self-stabilizing or not for a variety of
infinite-state systems. To this end, we
have developed a unified strategy
through which the problems for
one-counter machines, conflict-free Petri
nets, and lossy vector addition systems
with states were shown to be decidable.
The key behind our strategy is that for
each of the three classes of systems, the
reachability set from an arbitrary
configuration is effectively semilinear,
and it suffices to consider infinite
non-self-stabilizing computations with
periodic behaviors.

It is interesting to see whether our
strategy can be applied to a wider class
of infinite-state systems, or a similar
strategy  (without

reachability set being semilinear) can be

relying on the

extended to systems not enjoying the
semilinearity property.  An equally
important direction of future research
is to find out the exact complexity of the
self-stabilization problem for the above
systems. Finally,

self-stabilization for real-time systems

classes of

deserves further investigation, as many

real-world systems are of rea-time



nature. For the model of timed automata,
the region graph technique can easily be
applied to showing the decidability (in
fact, in PSPACE) of self-stabilization
(in the sense defined in this paper).
However, to cope with the nature of
real-time systems, one might have to
tailor the notion of self-stabilization to
better capture the intuitive concept of
“self-stabilizing  in a certain amount of
time, as opposed to ‘reaching a
legitimate configuration eventualy' as

defined in the conventional sense.
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