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Abstract: An adaptive fuzzy controller is 
developed for a serial-link robot arm. The 
proposed rotated fuzzy basis function (RFBF) 
controller is a more flexible fuzzy basis function 
expransion to approximate unknown functions of 
the robot model. All parameters of RFBF 
network can be tuned online when the number of 
rules is determined. In the control design, the 
unniodelled dynamics are considered. Moreover, 
the stability analysis shows that the states and 
tracking errors of the robot arm are uniformly 
bounded. Simulations of the proposed controller 
on the PUMA-560 robot arm demonstrate the 
effelctiveness. 

1 Introduction 

Fuzzy control has been an active research field in the 
past decade. Recently, it has also been related to adap- 
tive control based on fuzzy basis function expansion 
addressed in [ 1-31. Although adaptive fuzzy controllers 
in [2, 31 can guarantee the global stability and tracking 
performance, they can only tune a part of parameters 
of the fuzzy system. The robustness property of the 
controller was also not mentioned. 

The area of self-tuning fuzzy control has been stud- 
ied by many researchers, with a few of the notable ones 
surveyed here. Although self-organising, self-learning 
and self-tuning fuzzy control are something different, 
they are all treated as self-tuning fuzzy control here. 
Procyk and Mamdani [4] proposed a self-organised 
fuzzy control system which employs a mechanism to 
modify or create a fuzzy rule base. Since the pioneer 
work of Mamdani, considerable research works about 
self-tuning fuzzy control have appeared. Consequential 
papers which improve Procyk-Mamdani's controller 
were proposed in [5, 61. However, such self-organised 
fuzzy control systems cannot determine the rule 
number, shapes of membership functions, global stabil- 
ity and the tracking performance. Many fuzzy-neural 
paradigms have been proposed recently to confront 
these deficiencies. For example, Yamaguchi et al. [7] 
proposed a fuzzy associative memory system called 
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FAMOUS. In the IF-part of the knowledge pairs of 
FAMOUS, the membership function is automatically 
generated from input data by an unsupervised learning 
algorithm. Another class of adaptive fuzzy systems is 
based on feedforward five-layer neural networks. Lin 
and Lee [8] proposed an unsupervised learning neural 
network-based fuzzy logic control systems employing a 
reinforcement learning algorithm to tune parameters. 
This fuzzy controller can be represented by the ad hoc 
structure of a five-layer neural network which has a 
direct correspondence from fuzzy control system. Jang 
[9] also proposed a five-layer self-learning fuzzy control 
architecture whose learning algorithm is gradient 
descent. These two five-layer self-tuning fuzzy neural 
control systems are not capable of guaranteeing stabil- 
ity and tracking performance. 

Fuzzy Basis Function Network is a new fuzzy-neural 
scheme which integrates fuzzy reasoning systems with 
radial basis function networks. Nie and Linkens [lo] 
proposed a fuzzified self-organised radial basis function 
network employing a simplified fuzzy control algorithm 
(SFCA) to tune all parameters and construct the net- 
work. SFCA, which is an unsupervised learning algo- 
rithm, cannot guarantee the stability and performance. 
In the past, a fuzzy controller has not been viewed as a 
rigorous control approach owing to a lack of formal 
synthesis techniques that guarantee the very basic 
requirements of global stability and acceptable per- 
formance. Wang [2, 31 proposed an adaptive fuzzy con- 
troller which can tune the parameters of consequent 
part by adaptation law using Lyapunov stability the- 
ory. This controller can also cope with the unstructured 
dynamics by adaptive robust techniques. 

In this paper, the proposed controller is only based 
on a general three-layer neural network that 
implements a fully adaptive fuzzy radial basis function 
expansion. The architecture of the neural network is 
basically a multilayer neural network where radial 
functions are used instead of sigmoid functions in 
hidden neurons. The hidden-to-output layer 
interconnection weights correspond to the consequence 
part of the fuzzy rule base and the input-to-hidden 
layer interconnection weights can be mapped to the 
parameters of fuzzy basis functions. The major 
differences between RFBF networks and three-layer 
neural networks are the processing elements of neurons 
and the input-to-hidden layer interconnection weights. 
The input of the sigmoid (kernel) function of RFBF 
networks is the square norm of the difference of input 
vector and input-to-hidden layer weight vector. The use 
of RFBF controller in direct closed-loop controllers 
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can guarantee the global stability and tracking 
performance. 

2 Preliminaries 

2. I Robot arm dynamics 
The dynamic equation of an n degree of freedom robot 
manipulator is given by: 

M(e)fi+Vm(@,b)b+G(@) +F'+Q=Z (I) 
where vector 8 E Rn is the joint position vector; M(e) 
E Rnxn is a symmetric positive definite inertia matrix; 
V, (e, e ) is a vector of Coriolis and centripetal tor- 
ques; G(8) € R" represents the gravitational torques; F 
= K, + Vf€ Rnx" is a diagonal matrix consisting of the 
back emf coefficient matrix K, and the viscous friction 
coefficients matrix K j  z d  E Rnxl is the unmodelled dis- 
turbances vector; and 3 E Rnxl is the vector of control 
input torques. A planar two-link robot arm used for 
illustration is shown in Fig. 1. The structural pmperties 
of the robot such as boundedness of V, (8, e )  and 
skew-symmetry of matrix M -  V, are well-known and 
not stated here. 

link 6 

Fig. 1 A two-link robot manpilator with links 4, 5 and 6fixed 

f l  

fm 

Fig. 2 Network representation of RFBF expansion system 

2.2 Rotated fuzzy basis function networks 
A three-layer network representation of an RFBF net- 
work is shown in Fig. 2. The RFBF network can per- 
form the procedures of fuzzification, fuzzy inference 
and defuzzification. Let input space X C  R" be a com- 
pact product space. Assume that there are r rules in the 
rule base and each of which has the following form: 
R,:If XI is AI, and 5 2  is Az3 and . . . and x, is A,, 
then y1 is B,1 and y2 is B32 and . . . ym is BJm, 
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wherej = 1, 2, ..., r ,  the input vector x = (xl, x2, ..., xn) 
E X, x, (i = 1, 2, ..., n) contains the input variables to 
the fuzzy system, Yk (k = 1, 2, ..., m) are the output var- 
iables of the fuzzy system, and A, and Bjk are linguistic 
terms characterised by their corresponding fuzzy mem- 
bership functions pAij(xi) and pBjkCyk), respectively. 

As in [2], we consider a subset of fuzzy systems with 
singleton fuzzification, product inference, and Gaussian 
membership functions. Hence, such fuzzy system can 
be written as 

,=1 \ z = 1  / 
where f k :  X C R" - R", pBjk ( f j k )  = 1, and pAg (xJ is 
the Gaussian membership function of the form 

(3) 

where Eo and ov are real, and vector E - = [ E l j  .._ En,]' is 
an n-dimension vector. 

From the point of view of geometry, the rule base of 
an RFBF network can be written as [13]: Rj: If (Elj, olj) 
and 02j) and ... and (Enj,  onj), then (c j l ,  oil) and 
(ej,, a&), where q y  = [o;~, dj2, ..., o7J is the radius 
vector of THEN part of the jth rule, and q = [olj, 02j, 

..., onjIT and 5 j  = [E1,, 5.2j, ..., 5.nj]T are radius and centre 
vector of IF  part of the jth rule, respectively. 

Definition 1 : (Fuzzy Basis Function) Define fuzzy 
basis functions (FBFs) as 

z= 1 

j = 1 , 2 ,  . . . ,?-  (4) 

0 8 ,  ...) lioi). 

where , U ~ ,  (xi) are Gaussian membership functions 
(eqn. 3), x = [xl, x2, ..., xnIT E X and S, = diag(l/o$ 1/ 

Motivated by [ l l ,  121, the basis functions can be 
rotated to achieve better performance. We use the 
rotated fuzzy basis function which is defined as follows. 

Definition 2: (Rotated Fuzzy Basis Function) Define 
rotated fuzzy basis functions (RFBFs) as 

j = 1 ,2 ,  ...,?- ( 5 )  
where 8$ is the rotation matrix and zj = 

The RFBF expansion can be defined in the following 
definition. 

Definition 3: (Rotated Fuzzy Basis Function Expan- 
sion) The set of a fuzzy system with rotated fuzzy basis 
functions consists of all functions of the form 

- 5j). 

3=1 ,=1 

where cl are weights of defuzzifier, are rotated fuzzy 
basis functions. 

The concepts of input patterns and rule patterns are 
introduced in [lo]. The rule pattern of the jth rule is 
defined by the centre E l ,  and radius 4 of the jth rule. 
From the above definition, the n-dimensional vector 
RI $I will be referred to be a rotated input pattern and 
the rule pattern is the same as [lo]. In other words, the 
difference between RFBF and FBF networks is just in 
that the inputs are multiplied by a rotated matrix for 
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each ride. Fig. 3 shows the difference of two-dimension 
elliptic isocontours of FBFs and RFBFs and the latter 
has more flexibility in structure. In [2, 31, the parame- 
ters of pAa,(x,) are fixed and the weights c, are adjusta- 
ble. However, in this paper, the parameters of pA (x,), 
tq and oq are also adjustable and the para2eter 
updated law will be stated in a later Section. 

F 
a b 

Fig.3 
(U) Isocontours of fuzzy basis functions 
(b) Isocontours of rotated fuzzy basis functions 

Isocontours of fuzzy basis functions which has two input variables 

Another type of rotated fuzzy basis functions we 
consider has an easily calculated form: 

43 =~ e - ( ~ l o + ~ , ~ z ~ +  + ~ ) r L z n ) '  + ZT 3 -Net ZN e t  

- _. ,-Get ( W , g + %  %Net 

3 = 1 , 2 ,  . . , T  (7 )  
where o,~, o,~, ..., are adjustable parameters, a, = 
[q0, wjl,  ..., wJnlT and xNel = [l xTT. 

It is easy to show that using the definition 2 eqn. 7 
can be put into an RFBF form as in eqn. 5. Since the 
matrix is yyT + a,' a positive-definite matrix, there 
exists 

where A, = diag(4, AI ,  &, .., A,,). The matrix TI  can be 
divided into four blocks: 

uJw;+Q31=rp3r3, 9 =i,2,...,r (8) 

(9) 

where rll is 1 by 1, T12 is 1 by n, r21 is n by 1 and r22 
is n by n matrix. Thus equation eqn. 5 can be rewritten 
as: 
4 .  - e-xO(rll + r12g)ze-(rzl +rzzdTh: (rZ1+rz2d 

j = 1 , 2 ,  . . . , T  

where Sj = A; = diag(Al, A2, ..., A,,), $ j  = -r22-1r2, and 
= !Rj := Therefore, eqn. 7 is a rotated fuzzy basis 
function multiplied by a magnitude modification term 
e-h(rll + r1&2. 

Each fuzzy rule is described by membership functions 
of linguistic variables. In other words, in fuzzy basis 
function expansion, the parameters and oij determine 
the IF  part of rule and e, determine THEN part of the 
rule. From the previous derivation, while coj is deter- 
mined, we can find rj to determine Ei j  and oo by Sj = 
A/ and TZ2 5, = -r21. Therefore, the IF parts of rules 
can be reconstructed from rotated fuzzy basis func- 
tions. The weights c of defuzzifier can be tuned by 
learning algorithm. 

Rub-base initiulisution: To initialise the input pattern 
and rule pattern of a fuzzy system [lo] is to specify the 
centre and radius of each FBF. For RFBF, besides the 
specification of centre 5 j  and radius q, a rotated 
matrix !Rj is needed to be determined. As the rule base 
is initialised, the initial weight vector w can be deter- 
mined by the following equations. 

(10) 3 -  

rZ2 = xJ (11) 

IEE Pro(:..-Control Theory Appl., Vol. 144, No. 4, .July 1997 

Therefore, the initial weight vector 
from w ~ o  = r21TAr21 and 

can be calculated 

In comparison with general self-organising fuzzy sys- 
tems as [lo], the size of the RFBF network is smaller. 
For an RFBF network, there are only (n  + 1) x r + r x 
m parameters to be tuned and 2n x r + r x m parame- 
ters for [lo]. The parameters Si,, oLi determine the IF  
part and cI determine the THEN part of the jth rule. 
Therefore, these parameters are stored and tuned in a 
compressed form. Another advantage of RFBF is that 
the experts' experience can be incorporated into the 
RFBF network by eqns. 11-13. The lack of experts' 
knowledge is the major difference of Gaussian neural 
networks to FBF systems. In general FBF systems, 
only weights c of defuzzification can be tuned by learn- 
ing algorithm [1, 21. However, the RFBF network can 
tune both the IF parts and THEN parts of rules. In 
essential, the RFBF network is a multilayer neural net- 
works with Gaussian activation functions. The sigmoid 
functions may result in local errors producing global 
change for function mapping, however, Gaussian acti- 
vation functions are capable of eliminating this global 
interaction [13]. 

3 Robot RFBF controller design 

3.1 RFBF-based controller 
The control objective is to design a robust RFBF-based 
controller so that the movement of robot arms follow 
the desired trajectory even in the presence of distur- 
bances. Given a desired robot manipulator trajectory 
ut), the tracking error vector is g( t )  = ut) - fit) and 
error metric ~ ( t )  can be defined as 

s(t) = k( t )  + A&) (14) 
where A = AT > 0. The RFBF network is used to 
approximate unknown nonlinear function 

- f = M(@)(&+AE)+V,(@, 4) (@&Ag-A~at(s))+G(@)+F8 

The approximation error and unmodelled uncertainties 
are inevitable. Therefore, two methods are adopted to 
compensate them: one is the deadzone function and 
another is a robust term. Deadzones can be incorpo- 
rated into error metrics by defining continuous func- 
tion zA and &(t) as: 

(15) 

sA(t) = ~ ( t )  - Asut(s(t)/A) and 

s%(t)  = [ s ?  ' . '  Sk 1 
(16) 

(17) 
T 

where sat is the saturation function: 
1, z>l 

sa t (z )  = z, 121 5 1 { -1, z < - 1  
Deadzone functions, which are specified around the 
zero of their corresponding error metrics, will be used 
in the adaptation law to tolerate the parameter errors 
and approximator errors. The architecture of the con- 
troller is shown in Fig. 4. The control law is given by 

- .(t) = V R F B F ( t )  + &t) + Ks, (18) 
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where K is a positive definite diagonal matrix, yRFBA!) 
= C4 and _d(t) is the robust term. There are three main 
reasons for using rotated fuzzy basis function expan- 
sion system as the basic component of an adaptive 
fuzzy controller. First, the rotated fuzzy basis function 
expansion can be represented by a three-layer neural 
network as shown in Fig. 3 rather than five-layer neu- 
ral network as in [2, 31. The general learning algorithm 
can be used to train the network. Secondly, the experi- 
ences of human experts can be incorporated into the 
controller by the linguistic IF-THEN rules. The third is 
that the fuzzy system is a universal approximator. It 
has been proven in [7] that for any given real function1 
over X ,  there exists a fuzzy system in the fuzzy basis 
function expansion form of (eqn. 16) such that it can 
uniformly approximate f on the compact set X to arbi- 
trary accuracy. Accorangly, we have the following 
assumption: 

I I I 

Fig.4 Diagram of clvsed-loop system 

Astumption I :  There exist matrices Q* and c' such 
over a that f approximate - f with arbitrary accuracy 

compact set X, i.e. 

3 ~ *  and C* s.t. I j (g( t ) )  - - - j ( ~ ~ , ~ * , : ( t ) ) /  5 
Hence, eqn. 1 can be rewritten as: 

M g t )  = - (V, + K)sa( t )  + - j ( O * ,  C*,:(t)) 

- K R F B F ( t )  - a(t)  + s(t) + ?d (19) 
where the disturbance d(t)  =j(s(t)) - -f(Q*, - C,  ~ ( t ) )  sat- 
isfies lai(t)l 5 E~ 

The architecture of RFBF controller as an approxi- 
mator is shown in Fig. 2. Denote the approximator 
having (n + I) inputs, r rules and m outputs as follows: 

, . A  

- ?(:Net , fi, (3 = V R F B F  ( t )  = C4J( f12 :Ne t )  (20)  
where E Rrx(n+l) and C E Rmxr are RFBF network 
weight matrix and defuzzification weight matrix, 
respectively, and RFBF vector is 

4 q f i X N e t )  = [ ; ] a n d f i =  ["I (21) 

For simplicity, we define d = @(axNet) and gj* = 
H Q ' z N e t ) .  Thus, eqn. 19 becomes 

4 ( & T X N e t )  

4(&:XNet)  w, - T  

M i ( t )  = -(Vm+K)s,(t) +C*$*-f i$-!$( t )  - - +J( t )+zd  
( 2 2 )  

The RFBF can be expressed by Taylor series expansion 
[31 as 

- -  $* = 6 + $'fi2:Net + O((figNet)2) or 

- 4 = $'&.Net + o((fizNet)2) 

(23) 

(24) 
where 4 = d* - 6, = Q* - Si and 4 = diag(d1, ..., 
I&). Substituting esn. 23 into eqn. 22, we can get 

MS(t )  = -(Vm + K)sa(t) + 64 - + (?$'figNet + d -  2 ( 2 5 )  

where C = C" - dand _d = Cq$'QzNet + c " O ( ( a ~ ~ ~ , ) ~ )  + 

- a(t) + zd. In the following, the norm of vector or 
matrix, l l * l l ,  is Frobenius norm [14]. The upper bound 
of the norms of 0((a~,,,)~) is given by: 

(26) 

where 114 1 1  s ~1 and 1 1 @ 1 1  s K ~ .  And, the upper bound of 
the norm of _d is as follows: 

1, 2 2 0  
-1, 2 < 0  

sgn(x) = 

The parameters 6 Si and d, are updated by the fol- 
lowing adaptation law which is similar to the back- 
propagation algorithm: 

where K,, KQ and K, are positive symmetric constant 
matrices determining the adaptation rate. 

3.2 Stability analysis 
A stability theorem is presented for the tuning algo- 
rithm eqns. 28-30. 

Theorem 1: Consider the dynamic eqn. 1 with the 
control law eqn. 18 and weight tuning algorithm eqns. 
28-30. All states in eqn. 31 will remain bounded and 
the tracking errors will approach zero. 

Proof: Consider the Lyapunov function candidate 
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Evaluating the time derivative of V(t) along the 
trajectories of the tuning law eqns. 28-30, then 

V = 0, when Is;I 5 A, i = 1 , 2  
When lsil > A for each i, by the property of skew- 

symmetry of M- 2 ~ , ,  WG can get 

(32)  
Therefore, if aA, all Zy and all LjY are bounded at initial 
time t = 0, they will remain bounded for all time t > 0. 
If g(0) is bounded, then j ( t )  is also bounded for all 
time t ,  and since y,Xt) is bounded specified, J ( t )  is 
bounded as well. Next, WG will show that sA - 0 as t - 
W. It is easy to show by Barbalat's lemma: 

.i' [V ( r )  + s z K ~ ~  d r  with (33 )  1 VI( t )  = V(t)  - 

(34) T Vl(t) = -S*KSa 
Thus, we have shown that every term in eqn. 31 is 
bounded; hence sa is bounded and s is bounded as well. 
This implies that V ( t )  is a uniformly continuous func- 
tion of time. Since VI is bounded by 0, and v 5 0 for 
all time t ,  Barbalat's lemma can be applied to prove 
that + 0 and hence aA + 0 as t + w. Q.E.D. 

4 Simulation results 

In this section, PUMA-560 is taken as the robot 
manipulator to be controlled. As in [15], the fourth, 
fifth and sixth links of PUMA-560 were fixed, and the 
angles of the second and third links were considered to 
be O1 and e,, respectively. The numerical values of the 
robot model can refer to [15]. The desired trajectories 
for 8, and 0, were chosen as: 

O d l  = 0.5 + 0.2(sin t + sin at) 
Oda = 1.3 - O.l(sin t + sin at) 

(rad)  for 191 and 
(rad)  for 02 

The proposed RFBF controller was compared with 
the well-known Slotine-Li's adaptive controller. The 
Slotine-Li's method [ 121 estimated nine parameters; the 
proposed method approximated nonlinear functions 
eqn. 15. The derivative gains of Slotine-Li's method 
were ,KO = diag(250, 250). For the RFBF network, 
there were 20 rules in the rule base and the parameters 
of RFBF network were given by eqns. 28-30. The 
adaptation rates were specified as Kc = 100.01,,,, KQ = 
50.01,,t~+11x~n+11 and K, = 0.0515,, ( I p x p  is a p x p identity 
matrix). Figs. 5 and 6 show the desired trajectories and 
trajectories obtained from RFBF and Slotine-Li's 
controller. The maximum tracking errors of 01 and O2 
after the first two seconds of movement of the robot 
arm using the Slotine-Li's method were 0.72" and 
0.60". Using the proposed RFBF controller, the errors 
were found to be 0.39" and O.OX", respectively. This 
comparison shows the proposed controller can obtain 
more accurate tracking performance due to the good 
approximation capability of the RFBF network as 
shown in Figs. 8-11 show the simulation results with 
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bounded disturbances s& These results imply 
robustness of the proposed RFBF controller. 

the 

01 I I 
0 2 4 I 

time,s 
Fig. 5 

~ desired trajectory 
.... RFBFN controller 

Simulations,for 8, ( t )  using Slotine-Li's and RFBFN controller 

Slotine-Li's controller 

0 2 4 6 
time,s 

Fig. 6 
~ desired trajectory 
... RFBFN controller 

Simulations for &(t)  using Slotine-Li's and RFBFN controller 

- - Sloth-Li's controller 

time, s 
Fig.7 Input torques: q ( t )  and t,(t) 

01 I I 
0 2 4 

time,s 
Fig. 8 Function approximation of%(t) 
~. desired trajectory 
.. RFBFN controller 

291 



5 Conclusions 

A self-tuning rotated fuzzy basis function network has 
been proposed. The controller design is based on the 
proposed RFBF which is capable of incorporating 
experts’ experience into a controller. The self-tuning 
rotated fuzzy basis function control system used a 
smaller network size than other neural fuzzy systems to 
achieve the desired performance. The controller is 
flexible because all parameters of the RFBF network 
can be tuned by adaption law once the rule number is 
determined. By combining the deadzone functions and 
robustness techniques, we can show that the controller 
is robust. Sound tracking results could be obtained by 
the proposed controller. Simulation shows that the 
RFBF controller is more accurate than the well-known 
Slotine-Li’s controller. The stability analysis shows 
that the control system can be guaranteed to be 
asymptotically stable. 
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