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ABSTRACT This paper develops an approach for
designing a direct adaptive MIMO fuzzy logic controller to
overcome the interaction among the subsystems and
facilitate robust properties. The proposed adaptive fuzzy
controller requires no knowledge of the contrelled nonlinear
system. By employing fuzzy descriptions to the input
applied to one subsystem affecting the other subsystem and
using the Lyapunov stability theory, the overall adaptation
scheme has been proved to be able to guarantee the tracking
error residual set being uniform ultimate bounded. The
bounds of the fuzzy modeling error are estimated adaptively
using an estimation algorithm and the global asymptotic

stability of the algorithm is established via I * tracking
performance index. Simulation results of a two-dimensional
inverted pendulum confirm that the effect of both the fuzzy
approximation error and external disturbance on the
tracking error ¢an be attenuated efficiently by the proposed
method.

1. INTRODUCTION

Control of multivariable nonlinear systems has
emerged as an exciting research area because of its
widespread applications. Previous algorithms for sclving
the highly coupled nonlinear dynamic control problem
require accurate mathematical medel of the plant dynamics
[1,2]. However there exists inevitable unmodelled
nonlinearities and uncertain disturbance in their constructed
model where conventional control strategies cannot be
easily derived. Fuzzy logic and neural network based
control has emerged to be practical and successful
aleernative in the control of complex or ill-defined systems
[3]. Wang [4] has developed an important adaptive fuzzy
contrel system to incorporate with the expert information
systematically and has shown the stability of adaptive
control algorithms. However, in the direct adaptive fuzzy
contral of MIMO (multi-input multi-output) nonlinear
systems, the major problems are how to construct suitable
fuzzy control rules and deal with the unknown coupling
among the subsystems.

This paper will address the problem of controliing an
unknown MIMO nonlinear affine system subject to
unmodeled dynamics, bounded exogenous disturbances and
measurement noise. The development of the direct adaptive
fuzzy controller involves the design of a decoupling
network and the cascaded multilayer fuzzy systems. The
fuzzy rules are constructed in the form of “IF situation
THEN the control inpuf® [5,6]. By employing the fuzzy
descriptions to the input applied to one subsystem affecting
the other subsystem, the overall adaptation scheme has been
proved to be able to guarantee the tracking error residual set
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to be uniform ultimate bounded through Lyapunov stability
theory. Thus adjusting the parameters of the controlier and
the estimated parameters representing the true of the plant
parameters can create the control rules. The control
objective s obtained by tailoring a nominal adaptation

process of weights to supply H® control design with more
intelligent and fuzzy control design with better performance.
Finally, we evaluate the performance of the proposed
controller by considering the model following control
problem of a two-dimensional inverted penduium.

2. PROBLEM FORMULATION
Consider an MIMO nonlinear system governed by

Y = f(x)+ G+ d(x,0) (1)

where p=[»,, -y, 1" and p\7 =¥y denote
the output vector and its derivative, respectively,

. m .
r=1[rn, -] with 2 Jfi=nis defined as the system

relative degree, u= [, u,)
1

is the system input,

x =[x, x, ) =y, pi10 s Vg Ve T g
the state  vector,  f(xX)=[fi(x), - fa(OF
G(x)=[g,(x), - gm(x)] fi{x)  and  gi{x)=
(g1 (X}, 8m(x)) are unknown smooth functions,
i=1-,m, and d(x,0)=[d(x,0),,d,(x,n]' is the

disturbance with the properties of standard smoothness and

boundedness.

Let yy =(vgsar-¥5 ™) represents the known

desired trajectories for y,(¢), i=1---,m . Define the

tracking erroras e = [e/ ,--,e2]" & R" with

. . .1 i1 )47
e,:[ydj_ynydi—yis"'sy((j:r ]_y;(, )]l
=[ehéf_,_”1e,(r,.—l)]7‘

and A = Block diag[A,,+ A, with A, ={a,,a,])

2

e R" be such that all roots of the polynomial

Bis)=s" 4 aysU ) b v ay, it a, 3
are in the open left-haif plane. According to (1), if fand G
are known, the optimal control is

=GOS+ + A el “
After some manipulations through (1) and (4), we obtain
the tracking error dynamic equation

é=A,, e-B,., [Gx)(u-u")+d] (5)



where A = Block diag[ A4, 4;,+, 4,) ;
B = Block diag(B,,B,,,8,], and
0 1 e 0 0
4= . . | Bl
Ty Gy T @ !

The aim of the control is to make each subsystem of the
composite nonlinear system described by (1) asymptotically
match a linear reference model of the form (3) in the
presence of bounded disturbance d(x,#) . That is to

determine a controiler for the plant (1) so that the tracking
error ¢ = [e;,e;,+-,e,]" will be attenuated to an arbitrarily
smal! residual tracking error set.

Conceptually, the control strategy consists of two parts.

Firstly, the equivalent control ﬁeq is estimated by using

direct adaptive fuzzy controller, and the parameters of the
controller are directly adjusted to reduce some norm of the
output error between the plant and the reference model
toward a desired dynamics. Secondly, due to the existence
of fuzzy approximation errors and external disturbances,
simply an equivalent control term cannot ensure the
stability of the closed-loop system. Therefore it is necessary
to preserve a robust compensator to deal with the equivalent
uncertainty. Thus the control law can be represented as

u=a, +u, {6)
where i, and i, are, respectively, yielded through fuzzy
and non-fuzzy design manner.

Control Rule Base
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Fig. 1 The basic configuration of the fuzzy logic system,

3. DESCRIPTION OF THE FUZZY LOGIC SYSTEMS

Various fuzzy models and their control have been
successfully applied in many fields [7,8]. The fuzzy logic
systems can be constructed from the fuzzy IF-THEN rules
using some specific fuzzification, inference and
defuzzification strategies [4]. The basic configuration of the
fuzzy logic system is shown in Fig. 1. The fuzzy control
rules are the principal factor to determine the performance
of a fuzzy controller. Thus linguistic information from
human experts can be directly incorporated into controllers.

The fuzzy logic system performs a mapping from

UcR w0 VcR"™ . Let U=Ux-xU, and
V=Vx-xV, where U, cR, k=12,--,n and /; R,

i=12,--,m, respectively. A multivariable system can be
controlled by the following N linguistic rules
R': IF X, is 4 and - andx, is 4!

THEN u, is B{ and - and u,, is B, 7
where [=1-+ N, x,, k=12,---,n, are the input
variables to the fuzzy system, wu;, i=12,--,m, are the
output variables of fuzzy systems, and the antecedent fuzzy
sets A,': in U, and the consequent fuzzy sets B in V, are
linguistic terms characterized by the fuzzy membership
functions u y (x;) and pﬂf(u,) , respectively, The fuzzy

logic systems with center-average defuzzifier, product
inference and singleton fuzzifier is defined as [4]

PN AR
= (8)
> A (x)

where ' (x) = HLI'”Ai {x,) is the matching degree of the

u;{x)=

sth rule, and c,’.' is the center of the consequent membership

function of the /th rule. If c,f' is chosen as the design

parameter, the adaptive fuzzy system can be viewed as the
type of neural network. Therefore, (8) can be rewritten as

u(x) =4 -y (x) ©)

g =(c) )

w(xy={&, - &n )" is a regressor, and where the fuzzy
basis function is defined as [4]

Maist g (x4)
S i 0)

weight-adaptation law ]

[Freiwiog necvansn~ |

where Is a parameter vector, and

(10)

& =
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Fig. 2 The diagram of the adaptive fuzzy control system.

4. DESIGN OF THE ROBUST NEURO-FUZZY
CONTROLLER

The proposed robust neuro-fuzzy controller (RNFC) is
composed of the following three parts: a multi-layer fuzzy
system with rule credit assignment, a fine-tuning
mechanism on the consequent membership functions, and a
decoupling network [9]. Fig. 2 shows the configuration of
the MIMO fuzzy-set rule credit assignments (FS-RCA) and
the interconnections compensating network of the robust
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adaptive fuzzy control system. The multi-layer fuzzy
sysiem and the decoupling network are nominal designs
based on on-line approximation of the unknown nonlinear
functions of the plant. The fine-tuning mechanism is
designed to encounter the equivalent uncertainty resulted by
the plant upcertainty, the function approximation error, or
the external disturbances. Since nonlinear functions G(x)

and f(x) of the nonlinear system {1} are unknown, we will
introduce fuzzy systems, which are expressed as a series
expansion of fuzzy basis functions, to model the
uncertainties G(x)} and f(x) by tuning the parameters of
the corresponding fuzzy systems. According to these fuzzy
models, a stable adaptive controller can be constructed to
achieve the control objectives of effective tracking control
architecture.

Let ° be the output of the system’s ith MIMO FS-
RCA and does not take the interconnections among
subsystems into consideration. If the functions f and g;
in (1) are known, /=1,---,m, then the output response of
the fuzzy controller becomes

u = D f(x)+ ) + A" e) (in)

where D= Diaglg,], #° =[u?,-,u%]" . The proposed
controller has a neural part to release the interaction among
the subsystems and a fuzzy part to asymptotically cancels
the non-linearity in the system. The cutput of the equivalent
controller is combined with #° and its modification by
decoupling network

1, (1) = u’ () + Mu’ (1) (12)

To derive a stable weight adaptation in control matrix, the
matrix M be chosen as

M=, +C7'D)"! (13)
where [, denotes a m x m identity matrix and
0 gl2(x) glm (x)
&= g (x) 0 82, (x) (14)
gml(x) gml(x) 0

Using {11}-(14) and the Matrix Inversion Lemma [10]
(A+BCDY' =47 ~47'B(DAT'B+C Y ' D4
the analytical formulation of RNFC resolves into
oy =G -f ()4 +AT €] (15)

where G=C+D.

[n this paper we use direct adaptive fuzzy controllers,
therefore, the parameters of the controller are directly
adjusted to reduce some norm of the output error between
the plant and the reference model. Due to the existence of
fuzzy approximation errors and external disturbances,
simply an equivalent control term cannot ensure the
stability of the closed-loop system. Therefore it is necessary

to preserve a robust compensator to deal with them from (6).

Suppose that the control # due to the direct adaptive

f

control (DAFC) is the summation of a basic fuzzy logic
system ﬁ(xlgi) and a robust compensator ( &#, = G"u, )

u=i(x|$)-G'u, (16)

where c_’ 2[‘91,"';?,”1 ’ ﬁ :(ﬁl:”\ﬂm)y. with

&, (x |¢’1) :{0!.{‘ 'Eu (x) > Whel’e fu(x) = (gul!'“sfzm} )T iS
of fuzzy bases, ¢, =(8, -.dy) is the

corresponding  parameters of fuzzy logic systems,
i=1-,m.

a vector

5. ADAPTIVE FUZZY CONTROL LAW
~In direct adaptive fuzzy control (DAFC), linguistic
fuzzy control rules can be directly incorporated into the
controllers and the parameters of the controller are directly
adjusted to reduce some norm of the output error between
the plant and the reference model. As far as the adaptation
of the controller parameters are concerned the input applied
to one subsystem affecting the other subsystem. Thus the
unknown functions G(x) is estimated and the controller is
chosen by assuming the estimated parameters being able to
representing the true of the plant parameters. This is similar
that the indirect adaptive fuzzy control (IAFC) uses the
fuzzy system as approximator for the dynamic systems. The
main objective in this section is to derive the proper direct
adaptive fuzzy control law for the plant model whose
structure is represented by exploiting the advantages of the
DAFC and the IAFC into a single controller ie. both the
fuzzy controi rules and the fuzzy descriptions can be
incorporated into a single controller.
Firstly we determine the control as

u=Auy+(1- A (7

where #p and #,; are the control inputs contributed by the

DAFC and 1AFC, respectively, and 0<1<l is a
weighting factor. If fuzzy control rules are more important
than fuzzy descriptions, choose A1 to be large; otherwise,
choose A to be small. Secondly the functions f(x) and

G(x} ofthe system (1) are unknown, we replace f(x) and
G(x) by the fuzzy logic system f’(xit_?):[j}(xw,—)]m
and G(x|w) = [8, (X | Wi Where 8=[0,,--8,] ,
W= (W1 W Wi Wats s W ], Fi(X10,)=0] & 1 (x),
&,(x1w)) =Wl -, (%) with § ()= (& 1,0,E )" and
fg(x}=(§g],---,§g,v)7' are vectors of fuzzy bases,
&, =(8,,.8y) and

corresponding  parameters of fuzzy logic systems,
i,j=1,---,m . The resulting error equation (5) due to the

DAFC, given by (16}, becomes
é=A-¢-B-[G(x) (i), —uy)+d—-u,] (18)
where 4y, is the optimal control of the DAFC from (4). The

resulting error dynamics (5) due to the IAFC, given by (15),
becomes

wyz(wm,---,w,m) are the
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e=A-¢-B(f-N)+(G-Cuy+d-u,] (19)
Since the overall controller of (17) consists of a weighted
combination of DAFC and 1AFC, the resulting errors is
given by the weighting sum of (18) and (19) as
¢=Ae+Bu, - Bd+(1- DBI(S - f)+(G-Gu,]
- ABG (i), —upy) (20)
Define the parameters Q' , 8, w of the best
function approximation to be
gb sarg min [ sup

lu(x)~ ix 191 @D

WM g el
g =argmm[SUP | f(x)- F(x]18)1] (22)
w =arg mm[sup [G(x)- G(x]w)l] (23)

where £, and Q,

respectively,

are constraint sets for # and w ,
Qg = {Q :WQ’ < Mgma‘ } and
Q“' = {H IHJ < Mwuw} where Memau ! Mwma.v and M¢xuax

are specified by the designer. Applying (21)-(23) to (20),
the modified error dynamic equation is

é= Ag+(1- DB (x]) - F(48") + (Galw) - Gl N, )

defined as

~ ABG(x){(r,) (g) - i ,)(x|£5‘)] +Bu, - Bd + B,
5}3‘61 + Z,’ w”f Uy

- mo
=de+(1-1)B02% +Z,-:. B2 gy

6‘]7'4‘_-![

—
_2BG(x)| P2 8w
ey J.H -~ ~T
f)ﬂ‘:f:j- + ZJ=] w;jg'gu,}, wméu

+Bu, + 8¢ (24)

where (—)v, =#, —3: . W,j =Wy —w; , q;, =@; —(0," and
¢ = (= DA 18- 00+ (Glx W)~ Glaehar |- AG(x) ol 147 - ()]~
ts the minimum approximation errors. Our design objective
involves specifying the control u, and adaptive laws for @

w, and ¢ such that H” tracking performance is achieved.

Theorem I:. The tracking error by (24) allows us to
use the following parameter adaptation law in [4,11]

u,=-R'B” Pe 25)
@, = a,k] Pe&, (26)
), = -] Peg (27)

=76/ Pe u, (28)

where R = Diag[n,---,r,] with r,,

v o; , B and 7y ae
positive scalar values, /,j=1-.m , B=[b, ,b,],
BG =K =(k,.k,], P=P7T 20 is the solution of the
following Riccati-like equation

PA+A"P+Q-2PBR'B"P+—PBB'P=0  (29)

with the design parameters Q>0 , then the

H tracking performance is achieved for a prescribed
attenuation level p .

p>0,

Proof: We choose the Lyapunov function candidate as
0 ,)
+ ﬁm 8"? m )
I S
ot Z;=1 y""! wmj wm; )] (30)

V= J—eTPe+—’~(a,'la,7$, +
+ 21578, +-
+{ZH yi WLy, +
Taking the derivative of ¥ by the fact ¢,
" (24) and (25), we obtain

w; = W,
¥ =5g TIATP+PA-2PBR'E P]g+5(£ "B Pe+e PBE)

:?’.5,5,:0.,,

i+

— 2@ K] Ped, ~ai'p))+ -+ (KL PeE, ~a )]
FO- DT B Pe ; + B L (B P + 530,))
HO= DR W, (] Pedguy +rifw ) weee 3 BB Ped i, +y5005,,0]

= ;—gr[AT P+PA-2PBU'B P+ LZPHBTP]Q
rel

-3 8 Pe-p0V (LB Pe gy LigTg

I P 2

~ o) ] Pes, —al' ) ol kL Pel, —alp, )]
=T (8 Pek, + B0+ 20T BT PeE, + 5,)]

HU- AT B Peg g 4 i,y T WABL PS4y ]
If we choose the adaptive law as @, =ak! Pel, |
4, =-ﬂ,-b,TPgrff » '5’;,. = “}’ybirpé’f;;”r, s Lf=Elem,
and the Riccati-like equation {29), we get
Vs-2e'0er1p%"¢ G
We integrate (31) from t=0 to t =T yields
V(T)-V(0) < —% J’O "o Qeds + % pL J:lg"'gdt (32)
From (30) and ¥(T'} 2 0, we obtain the control objective of

H?™ tracking performance index as

vy r sty

[, €'eedt s’ @Pe)+p? [ ¢ g
o & =

+Ua g, (O (0)+-+a,'p,, (0)9,,(0)

+(1 =BT (0,0 +-+ 5,8 (0F,,(0))
D OR O 3y, (007, (0)]

Claim I: The solvability of H” tracking performance

by parameter adaptation law (26)-(28) is on the existence of

a solution P =P" 20 of the Riccati-like equation (29).
The Riccati-like equation has a positive semi-definite

solution P =P" >0 ifand only if [12}
2R"'—;‘;120 or 2p*1 >R (33)
Therefore, for a prescribed p in H” tracking control, the

weighting factor R on robust compensator (25) must satisfy
the above inequality.
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Fig. 3 A two-dimensional inverted pendulum system.

6. SIMULATION .

Here, we demonstrate the geometric configuration of
an inverted pendulum manipulator with 2 degrees of
freedom in the rotational angles described by Euler angles

¢, and g, in X and Y direction [13], respectively, as

shown in Fig. 3. On the assumption that the rotational
angles of the two planar pendulums are small, motions of
the two planar pendulums can be considered independent of
each other. The external forces, u) and u,, are applied to

keep the pendulum at the upright position in X and Y
direction, respectively, m; and m, are the mass of the
carriage and pendulum.

The dynamic equations describing the motion of an
inverted pendulum systemn are derived by the Lagrange
scale function L(g,4) [14]. Variable g represents the states

g, and g, ! is the half-length of the pendulum. After some

manipulation, the dynamic equations are of the following
form

H H 7 Ci (1,4 u d,
i i?.i“:?lj|+ '(q?)]i—Z(q):N[ 1]+[ I]
Hy Hunld Ca(q, ) Uy d
where
Hy, =mi? (% +cos? g5 +sin’ g, sin” g5)
mit 2 2 -2 2
= (" fuyem NC0s”" g, €05" gy +sin” g, sin” ¢,)
242 . .
H\y = Hy =[(*™ muml)—mlll]cosq, sing, cosgq, sing,
Hy =mi? (Y +sin’ g, +cos’ ¢, cos® ¢;)
- (JHIIIZ f"“‘i-lﬂl)(Sin: ql Sin2 qZ + COSZ ql Cosz qz)
C"l = ("’|" m"-»ml)(qliz + q;)COSQI Sin q] (cosz QZ - Sin2 ‘]2)
JI 2 . . .
+ (7 m“+m,)QIQZ(COSZ g) ~sin® g;)cosg, sing,
+m 12§} +§3)cosg, sing, sin® g
—2my1% 4,4, cos® g, cosq, sin g,
Iyt 2 -2 2 2 :
Cs =(""%:,+,,,,)(c5r.2 +q7)(cos” g, —sin” g,)cosq; sing,
2l ‘o . 2 -2
+ (M0 Yird cosg, sing, (cos? g ~sin® g;)
(g + 43 )sin’ g, cosq; sing,

~2m,1%§,, cosg, sing, cos’ ¢,

' Z =—m,gllsing, cosq,,cosq, sing, I

oy c0sg| C0Sq, —sing,sing;
N="
Fuh COS{, COS g5

The kinematics and inertial parameters of the
pendulum system are chosen as m, =lkg, m, =05kg ,
[=0.5m , and initial states g,{(0)=¢g,(0)=02rad ,
g,{0) = g, (0) = 0 rad / 5 . The trajectories to be followed are
described by two decoupled linear systems, the desired
coefficients are specified to be o, =2, a5 =1, i=12.
The pendulum is given the following target joint rotations:

g ={(x/15)sint, g,y =(x/15)cost+(x/30)cost
The membership functions of states g,, ¢, ¢,, and ¢,

—singy;sing,

(represented by generic variable x, ) for the qualitative
statements are defined as
NB :exp(-0.5(x, + 0.4)*), NS:exp(-0.5(x, +0.2)%),
PB exp(-0.5(x, -04)%), PS: exp(-0.5(x; -0.2)Y,
ZE :exp(~0.5x%) .

In {26)-(28), the design parameters are given by
=104y, a;=1, y, =001, i, j=1--m. Consider
attenuation

three cases of  prescribed levels

p =004, 008 012 and set R =2p”], respectively.
In this simulation the combined effects of friction and
the external disturbances are given as
dy = sin{gy) +1.25sin(4, ) + 0.25sin(r)
d, =2.5sin{g;) -+ 2sin(g,) + 0.Zsin(t)
The curves of g, and g, under different attenuation levels

are given in Fig. 4 and Fig. 3, respectively. Notice the
important feature that under low attenuation level ( p is

large, €.g., p =0.15)the A tracking performance is often

poor. The simulation result in Fig. 6 indicates that the
integrals of error signals under different prescribed
attenuation levels are decreased obviously. The effect of
both the fuzzy approximation error and external disturbance
on the tracking error has been attenuated efficiently. Thus
we see that our robust adaptive fuzzy controller can control
the inverted pendulum to follow the desired trajectory
without using any linguistic information.

7. CONCLUSION

The goal of this work is the development and
implementation of a multi-layer fuzzy system for direct
adaptive fuzzy control to operate a two-dimensional
inverted-pendulum system. The self-tuning mechanism on
the membership function has been proposed to encounter
the equivalent uncertainty resulted by function
approximation  error, external  disturbances, and’
measurement noise. By employing the fuzzy descriptions to
the input applied to one subsystem affecting the other
subsystem, the overall adaptation scheme has been proved

3156



to be able guarantee the tracking error residual set to be
uniform ultimate bounded.

Although only the inverted-pendulum system has been
studied in this paper, the proposed control scheme can also
be used to address the other class of MIMO nonlinear
systems. Further works are still under investigation to apply
the proposed adaptive fuzzy algorithm to build
automatically fuzzy IF-THEN rules.
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