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Abstract-In this paper, a new method to improve TCP 
SACK’S performance over wireless links is presented. The 
proposed method attempts to differentiate congestion and 
corruption loss by the use of tagged segments. Whenever 
a congestion loss OCCUPS at a router, a tagged segment is 
dropped at the router and a notiflcation is generated. Loss 
of the tagged segment is eventually detected by the TCP 
to serve an indication of congestion. When the tagged seg- 
ment is not lost due to congestion, its survival then further 
seryes as a trial signal for the TCP to detect corruption 
loss. Contrasting to most existing approaches employing 
explicit notification, our method is attractive in that it  re- 
quires no modiflcation to the receiving end. Simulation 
results show that our method signifleantly improves the 
performance of TCP SACK over both low and long delay 
noisy links. 

I. INTRODUCTION 

Extending the TCP (Transmission Control Protocol) 
into the wireless segments has attracted enormous re- 
search attention in recent years [1]-[18]. One major effort 
treats the performance degradation problem of wireless 
TCP which is caused mainly by TCP’s unable to  discern 
between network congestion and (wireless) link corrup- 
tion losses, and the predominant assumption that TCP 
segment loss is a sign of network congestion. 

Among the many approaches to  cure this problem, one 
category falls into providing a robust wireless link using 
more powerful link-layer protocols, e.g., FEC (Forward 
Error Correction) or ARQ (Automatic Repeat request) 
[l], [Z], or using a performance enhancing proxy (PEP) at  
the boundary of the Internet, e.g., the snoop protocol [3] 
or the split-connection protocol [4]. Another category is 
t o  change TCP to let it become capable of distinguishing 
these two kinds of loss [7]-[ll]. In this category, side in- 
formation must be supplied and should be firm and clear 
enough to  let a sender correctly tell if a loss is due to  
corruption and to  avoid triggering unnecessary conges- 
tion avoidance mechanism. But, if side information has 
ambiguity, the sender should be rather conservative in 
preventing network from congestion collapse 1191. 

There have been several previous works 191-1111 on pro- 
viding clear side information. Their design is to  incorpo- 
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rate an explicit notification signal into the congestion de- 
tection mechanism. However, most of them require mod- 
ifications at both the sender and receiver TCP, and at 
routers or base stations as well. Other approaches, e.g., 
[5]-[7], although affect only TCP implementation at the 
sender, the information provided is less clear. 

In this paper, a new method to differentiate these two 
types of segment loss is proposed. When a router is in 
congestion, a notification is generated by forcefully drop- 
ping a pretagged segment. Based on whether a congestion 
notification is detected, the TCP is able to differentiate 
congestion losses from corruption losses. The proposed 
congestion notification involves changes at the sender and 
routers only, no modification is required at  the receiving 
end. 

The rest of this paper is organized as follows. Section I1 
gives relevant backgrounds, including related works that 
use side information for differentiation, and an overview 
of TCP SACK (TCP with Selective Acknowledgement). 
We introduce the proposed method in Section 111, and 
compare its performance with TCP SACK through sim- 
ulations in Section IV. Finally, concluding remarks are 
given in Section V. 

11. BACKGROUNDS 

A .  Related Snde-hformatzon Based Works 

Side information appears in one of the following forms. 
RTT (round trip time) [5], (61: The sender deduces 

that a router may currently encounter congestion from 
the observation of an increasing RTT. Segment losses are 
then assumed to  he due to  congestion in this case. 

ECN (explicit congestion notification) [ZO]: For a TCP 
connection that is ECN-capable, if a sender receives three 
duplicate ACKs with the CE (Congestion Experienced) 
bit set, the sender infers that a segment loss due to  con- 
gestion has occurred (71. 

ELN (explicit loss notification) [SI: An ELN bit in a 
new form of acknowledgement called ACKELN is judged 
at the base station, and is used to  explicitly tell that a 
segment has been lost before it comes to  the base station. 

Lhack (last hop acknowledgement) 191: A lhack is r e  
turned to the source for every message received at the 

0-7803.7757.51031s17 00 02003 IEEE 1730 



base station, and is used bo indicate to the source that 
the corresponding message must have been lost due to 
corruption if the sender does not receive an ACK from 
the receiving end for this message. . W-ECN (wireless-ECN) [lo]: The W-ECN is used as 
a prompt notification to retransmit lost segments when- 
ever congestion loss occurs. Thus, it can be used as an 
indicative signal of congestion. 

HACK (HeAder ChecKsum) [ll]: The HACK proposes 
to add a separate checksum for the header portion of a 
TCP segment so that TCP receiver is able to check the 
integrity of header. The receiver is able to  return a signal 
ACK back to the sender indicating corruption. 

In comparison, RTT or ECN provides less clear infor- 
mation than the other four. But, implementation of ELN, 
W-ECN, or HACK requires changes at both sender and 
receiver, and at  routers or base stations as well; while 
implementation of RTT or ECN affects the software a t  
sender only. Lhack though is able to provide a clear sig- 
nal and requires no change at  the receiver, the signal is 
subject to loss as it travels hack to  the sender. 

B. TCPSACK 
The SACK option of TCP has been standardized and 

widely deployed in the Internet [12], [21]. In TCP SACK, 
the SACK option should he included in duplicate ACKs 
[22]. When three consecutive duplicate ACKs are col- 
lected a t  the sender, fast recovery is triggered and trans- 
mit window is halved. 

Using SACK, a sender can he informed of up to three 
noncontiguous blocks of data that have been received and 
queued at  the receiver. With this information, the sender 
is able to  retransmit the segments that comprise the holes 
in the sequence space, whenever the number of flying seg- 
ments in the pipe is less than the congestion window. If 
there are no holes, new data is sent. When an ACK ac- 
knowledges everything sent before fast recovery was en- 
tered, the TCP leaves fast recovery. 

Due to the ability to recover from multiple lost seg- 
ments in one RTT, it has been shown that TCP SACK 
provides a better performance than other versions of 
T C P  [4], [14]. In addition, experiment results also show 
that TCP SACK is more efficient on noisy large BDP 
(bandwidth-delay-product) connections [15]. 

111. THE PROPOSED METHOD 

The proposed method is a variant of T C P  SACK. It 
attempts to differentiate losses by the use of tagged seg- 
ments. Differentiation is facilitated by a new conges- 
tion detection mechanism, whereas segment losses are no 
longer directly interpreted as congestion warning unless 
a tagged segment is declared lost. 

A .  Tugged Segments 

Tagged segments are equivalent t o  normal TCP seg- 
ments except that the priority bit in their I P  header is set 

low. Like normal segments, payload information is also 
carried by tagged segments; thus, they must be recovered 
if they are lost. To T C P  receiver, a tagged segment looks 
exactly the same as a normal segment, since its IP header 
would have been removed. 

Use of low-priority segments can also he found in 1131, 
[E], and [23]. They are used as probing packets to mea- 
sure the available bandwidth in the network [13], [23], or 
are used to  carry information to the receiver more rapidly 
without harming other flows [16]. In this paper, tagged 
(low-priority) segments are used to provide the sender 
with the information of network congestion. 

In the proposed method, one segment is tagged at the 
source per every window worth of segments. When an 
ACK returns to  acknowledge successful reception of the 
previously tagged segment, a next segment is tagged, even 
when the TCP is undergoing a fast recovery. 

B. Droppzng Polacy ut Routers 

The proposed method requires the support of a new 
dropping policy at  routers. Under this new dropping pol- 
icy, whenever congestion loss occurs a t  a router, a n e  
tification is generated by forcefully dropping one tagged 
segment a t  the router. If no such tagged segment is avail- 
able, the next arriving tagged segment will be dropped, 
even though the router may become not congested as it 
arrives. Dropping a tagged segment serves as a notifica- 
tion to cover congestion losses that have occurred since 
the drop of the last tagged segment. Loss of a tagged seg- 
ment will be eventually detected at the sender via SACKS 
to  serve as a signal indicative of congestion. 

It should be noted that a tagged segment may he force- 
fully dropped when the buffer is actually not full. The 
impact of such extra drop can be either of the following 
two. One is that this extra drop may lead the T C P  to  
reenter fast recovery. We shall later in Sec. IILD.1 illus- 
trate that fast recovery reentering is vital for the proposed 
method. The other is that  TCP may take more time to 
recover losses. It is because that, although TCP SACK 
is able to retransmit multiple losses in one RTT, it in no 
way says that no matter how many segments are lost all 
can be retransmitted in one RTT. Thus, the TCP may 
take an additional RTT to continue to  recover losses due 
to  the extra drop [24]. We have performed simulations to  
examine its impact on Performance in Sec. N.B; as will 
be seen, degradation turns out t o  he very light. 

C. Differentiation Rule 

In the proposed method, differentiating losses between 
congestion and corruption is performed at the end of fast 
recovery according to whether a tagged segment has been 
lost in the window upon entering fast recovery. Under 
our new dropping policy, if loss of a tagged segment 
is found there exists at least one segment loss due 
to congestion; otherwise, all losses are due to cor- 
ruption. When congestion loss is detected, the TCP 
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must slow down its sending rate, even if there is only one 
segment loss that is due t o  congestion. On the contrary, 
when losses are concluded as due to corruption. the trans- 
mit window is restored to the value before fast recovery 
was entered. 

Unfortunately, loss of a tagged segment may be due 
to not only congestion at a router hut also corruption 
on the wireless link. Differentiation is conservative by 
assuming that a congestion event has occurred in this 
case. However, when a tagged segment is not lost, the 
survival would provide TCP with a strong indication that 
no congestion has occurred on the path; thus, all segment 
losses can he concluded as due to corruption. 

Due to that loss of a tagged segment is used as a con- 
gestion notification, our method involves changes at the 
sender and routers only. No modification of software is 
required at the receiver. Furthermore, our congestion no- 
tification mechanism is robust, since the signal provided 
is ohviously free from any further damage as it loops back 
to the sender. 

D. Reliabrlity of the Proposed Method 
The proposed method poses two main threats to reli- 

ability. One is that delayed congestion notification may 
result from delayed drop of a tagged segment. Another is 
that route may change. 

D. l  Delayed Congestion Notification 

Under the new dropping policy, as mentioned in Sec. 
III.B, whenever a congestion loss occurs at a router, one 
tagged segment needs to he dropped in order t o  generate a 
notification. If none is available, the next arriving tagged 
segment is dropped. This results in the following two 
scenarios. 
1. The tagged segment to he dropped is sent before 
TCP’s entering fast recovery. In this case, the segment 
would have appeared in the window when fast recovery 
is entered. Loss of this tagged segment shall be detected 
at the end of fast recovery, and used to notify of network 
congestion. 
2. The tagged segment to he dropped is a new data seg- 
ment that is sent during fast recovery. This occurs when 
there are no holes in the window and the number of seg- 
ments in the pipe is less than the congestion window, 
as mentioned in Sec. 1I.B. If all losses in the window 
upon entering fast recovery have h e n  recovered, TCP 
will leave the current fast recovery. In this case, loss of 
the tagged segment shall be detected in the next fast re- 
covery. According to our differentiation rule, a sender 
does not reduce its rate until a congestion is notified. 
Thus, sender’s response to a congestion event has to he 
delayed till when loss of the tagged segment is detected at 
the end of a later fast recovery. The delay would amount 
to ahout one RTT, i.e., the duration of a fast recovery. 

To solve the above problem, one possible solution is 
to inject more tagged segments into every window. This 
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Fig. 1. The topology in the simulations of (a) a TCP connection 

over a wireless link and (b) a wired connection. 

would force the first scenario to occur more often, and 
would thus lessen the occurrence of the second. However, 
the increase would raise the ambiguity or vagueness of our 
proposed signal, due t o  increasing chance that tagged seg- 
ments are rather corrupted by channel errors. This would 
as a result reduce the degree of improvement offered by 
our method. 

D.2 Route Changes 

In practice, the route of a TCP connection may un- 
dergo changes during its lifetime, although route changes 
are normally infrequent 1251. If the ronte has changed 
while a congestion event occurs in the old path, conges- 
tion notification may not be generated by the new path. 
Without congestion notification, the sender does not r e  
duce its transfer rate. However, this does no harm to the 
network since sender has no need t o  reduce its rate if no 
congestion develops along the new path. 

IV. SIMULATION RESULTS AND DISCUSSIONS 

In this section, throughput performances of the pro- 
posed method and TCP SACK are compared via simula- 
tions. The simulations are conducted using the TCP ns-2 
simulator of LBNL (Lawrence Berkeley National Lahora- 
tory) [26]. The traffic is assumed to he FTP  transfers. 
The size of each transferred file is 1 Mhytes, and the 
length of a segment is 1,000 bytes. 

A .  TCP Connections over Wireless links 
In this section, performance of the proposed method is 

examined over a wireless link. The topology in the sim- 
ulations is depicted in Fig. 1 (a). It consists of a server, 
a gateway, and a receiver. The wired link between the 
server and the gateway can he viewed as a path through 
routers in the Internet. Its bandwidth is assumed to he 
10 Mhps [6], [17], and its delay is assumed to be 40 msec 
[14], (171. The bandwidth of the wireless link between the 
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Fig. 2. Comparison of throughput performance over (a) a low delay 
noivy link and (b) a long delay noisy link. 

gateway and the receiver is 2 Mbps [7], [17]. But its delay 
is taken to  be either 0.01 [ 6 ] ,  [7] or 250 msec. The for- 
mer may correspond to a low delay link such as a wireless 
LAN or cellular system; while the latter may represent a 
long delay link such as a satellite link. 

Correlated channel errors are applied to the wireless 
link, and are modeled as a two-state, a good state and 
a bad state, Markov process [IS]. The residual time in 
either state is exponentially distributed. The mean good 
state period is fixed at 100 msec; while the mean bad 
state period is varied from 1 to 10 msec to  reflect various 
channel conditions. Segment transmissions are assumed 
to be successful in a good state and corrupted in a bad 
state, with probability both equal to  one. After 100 inde- 
pendent runs, the results are used to  calculate the mean 
TCP throughput with a 95% confidence interval. 

A . l  Low Delay Noisy Links 

In this section, the throughput performance of the pro- 
posed method is compared with TCP SACK over low de- 
lay noisy links. In Fig. 2 (a), our method significantly 
outperforms TCP S.4CK, especially for short mean bad 
state period. The throughput is improved hy 83% for 
mean bad period equal to 1 msec, 63% for 5 msec, and 
47% for 10 msec. The substantial improvement is mainly 
due to the fact that the proposed method avoids unneces- 
sary activation of congestion avoidance mechanism, when 
segment losses are due to corruption and when they are 
correctly identified. 

The advantage of our method becomes less substan- 
tial for long bad state. It is because that burst length is 
proportional to  the duration of the bad state. As burst 
length increases, the chance of a tagged segment being 
hit by channel errors increases. Once a tagged segment is 
lost, even though the loss may be due to  corruption, con- 
gestion is assumed according to our differentiation rule. 
This results in unnecessary window reduction, a conse- 
quence equivalent to  what the original TCP SACK would 
have; thus, no improvement is seen in this case. 

It is clear that improvement offered by our method 
relies heavily on the survival of tagged segments when 
channel errors occur on wireless links. In our proposed 
method, if more protection can be placed on tagged seg- 
ments a t  the link level, further improvement is antici- 
pated. Ideally, if tagged segments can be completely 
shielded from channel errors, the proposed method should 
perform exactly the same as those employing explicit n& 
tification. 

.4.2 Long Delay Noisy Links 

Channel errors are shown to have more severe effect on 
TCP performance over long delay links [13]-1151. It is due 
to that slow growing of window size after the congestion 
window is halved in reaction to a segment loss. 

In this section, the performance improvement achieved 
using our method over long delay noisy links is examined. 
As shown in Fig. 2 (b), our method still performs better 
than TCP SACK by 77% for mean bad state period equal 
to  1 msec, 48% for 5 msec, and 44% for 10 msec. Compare 
with the previous section, as expected both methods drop 
dramatically in throughput over long delay noisy links by 
about 80%. However, loss in improvement of our method 
over TCP SACK is light, by less than an average of 10%. 

B. TCP Connections ouer Wireline Links 

In this section, performance of our method is examined 
on a connection that consists of wireline links only. The 
topology in the simulations is depicted in Fig. 1 (b). It 
consists of a server, a router, and a receiver. The link '1' 
between the server and the router and the link '2' between 
the router and the receiver are both wireline of 10 Mbps. 
The delay of link 1 is fixed at 10 msec; while the delay of 
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link 2 is varied from 0 t o  90 msec to  reflect various RTT 
values of a TCP connection. 

3, performance of the proposed 
method is almost equivalent to  that of TCP SACK on 
a wired connection, with a very slight average degrada- 
tion of only 2.2%. In the simulations, performance loss 
of the proposed method is mainly due to the additional 
time taken for TCP to recover a possible extra drop (of 
a, tagged segment) as discussed in Sec. 1II.B. 

As shown in Fig. 

V. CONCLUSIONS 

In this paper, we have proposed a method to  improve 
the performance of T C P  SACK over wireless links. The 
proposed method is made possible by the use of tagged 
segments accompanied by a new dropping policy. In the 
proposed method, a sender is able to discern congestion 
from corruption in large likelihood. In contrast to  most 
other existing approaches employing explicit notification, 
our method is attractive in that it requires no modifica- 
tion a t  the receiver. However, a support is required at 
the routers to  generate congestion notification signals by 
dropping tagged segments. Through simulations we have 
compared the performance of our proposed method with 
TCP SACK over both low and long delay noisy links. 
The results show that our method significantly improves 
TCP SACK over a wide range of channel conditions in 
both environments. 
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