
A New Method to Improve the Performance of TCP SACK -
over Wireless Links

Jeng-Ji Huang
Department of Electrical Engineering

National Taiwan University
Taipei 106, Taiwan

E-mail: hjj@santos.ee.ntu.edu.tw

Abstract-In this paper, a new method to improve TCP
SACK’S performance over wireless links is presented. The
proposed method attempts to differentiate congestion and
corruption loss by the use of tagged segments. Whenever
a congestion loss OCCUPS at a router, a tagged segment is
dropped at the router and a notiflcation is generated. Loss
of the tagged segment is eventually detected by the TCP
to serve an indication of congestion. When the tagged seg-
ment is not lost due to congestion, its survival then further
seryes as a trial signal for the TCP to detect corruption
loss. Contrasting to most existing approaches employing
explicit notification, our method is attractive in that it re-
quires no modiflcation to the receiving end. Simulation
results show that our method signifleantly improves the
performance of TCP SACK over both low and long delay
noisy links.

I. INTRODUCTION

Extending the TCP (Transmission Control Protocol)
into the wireless segments has attracted enormous re-
search attention in recent years [1]-[18]. One major effort
treats the performance degradation problem of wireless
TCP which is caused mainly by TCP’s unable to discern
between network congestion and (wireless) link corrup-
tion losses, and the predominant assumption that TCP
segment loss is a sign of network congestion.

Among the many approaches to cure this problem, one
category falls into providing a robust wireless link using
more powerful link-layer protocols, e.g., FEC (Forward
Error Correction) or ARQ (Automatic Repeat request)
[l], [Z], or using a performance enhancing proxy (PEP) at
the boundary of the Internet, e.g., the snoop protocol [3]
or the split-connection protocol [4]. Another category is
t o change TCP to let it become capable of distinguishing
these two kinds of loss [7]-[ll]. In this category, side in-
formation must be supplied and should be firm and clear
enough to let a sender correctly tell if a loss is due to
corruption and to avoid triggering unnecessary conges-
tion avoidance mechanism. But, if side information has
ambiguity, the sender should be rather conservative in
preventing network from congestion collapse 1191.

There have been several previous works 191-1111 on pro-
viding clear side information. Their design is to incorpo-

The vmrk reported in this paper is supported by the National
Science Council, Taiwan (NSC 91-2219-E-260-001).

Jin-Fu Chang
Department of Electrical Engineering

National Chi Nan University
Puli, Nantou 545, Taiwan

E-mail: jfcbang@ncnu.edn.tw

rate an explicit notification signal into the congestion de-
tection mechanism. However, most of them require mod-
ifications at both the sender and receiver TCP, and at
routers or base stations as well. Other approaches, e.g.,
[5]-[7], although affect only TCP implementation at the
sender, the information provided is less clear.

In this paper, a new method to differentiate these two
types of segment loss is proposed. When a router is in
congestion, a notification is generated by forcefully drop-
ping a pretagged segment. Based on whether a congestion
notification is detected, the TCP is able to differentiate
congestion losses from corruption losses. The proposed
congestion notification involves changes at the sender and
routers only, no modification is required at the receiving
end.

The rest of this paper is organized as follows. Section I1
gives relevant backgrounds, including related works that
use side information for differentiation, and an overview
of TCP SACK (TCP with Selective Acknowledgement).
We introduce the proposed method in Section 111, and
compare its performance with TCP SACK through sim-
ulations in Section IV. Finally, concluding remarks are
given in Section V.

11. BACKGROUNDS

A . Related Snde-hformatzon Based Works

Side information appears in one of the following forms.
RTT (round trip time) [5], (61: The sender deduces

that a router may currently encounter congestion from
the observation of an increasing RTT. Segment losses are
then assumed to he due to congestion in this case.

ECN (explicit congestion notification) [ZO]: For a TCP
connection that is ECN-capable, if a sender receives three
duplicate ACKs with the CE (Congestion Experienced)
bit set, the sender infers that a segment loss due to con-
gestion has occurred (71.

ELN (explicit loss notification) [SI: An ELN bit in a
new form of acknowledgement called ACKELN is judged
at the base station, and is used to explicitly tell that a
segment has been lost before it comes to the base station.

Lhack (last hop acknowledgement) 191: A lhack is r e
turned to the source for every message received at the

0-7803.7757.51031s17 00 02003 IEEE 1730

base station, and is used bo indicate to the source that
the corresponding message must have been lost due to
corruption if the sender does not receive an ACK from
the receiving end for this message. . W-ECN (wireless-ECN) [lo]: The W-ECN is used as
a prompt notification to retransmit lost segments when-
ever congestion loss occurs. Thus, it can be used as an
indicative signal of congestion.

HACK (HeAder ChecKsum) [ll]: The HACK proposes
to add a separate checksum for the header portion of a
TCP segment so that TCP receiver is able to check the
integrity of header. The receiver is able to return a signal
ACK back to the sender indicating corruption.

In comparison, RTT or ECN provides less clear infor-
mation than the other four. But, implementation of ELN,
W-ECN, or HACK requires changes at both sender and
receiver, and at routers or base stations as well; while
implementation of RTT or ECN affects the software a t
sender only. Lhack though is able to provide a clear sig-
nal and requires no change at the receiver, the signal is
subject to loss as it travels hack to the sender.

B. TCPSACK
The SACK option of TCP has been standardized and

widely deployed in the Internet [12], [21]. In TCP SACK,
the SACK option should he included in duplicate ACKs
[22]. When three consecutive duplicate ACKs are col-
lected a t the sender, fast recovery is triggered and trans-
mit window is halved.

Using SACK, a sender can he informed of up to three
noncontiguous blocks of data that have been received and
queued at the receiver. With this information, the sender
is able to retransmit the segments that comprise the holes
in the sequence space, whenever the number of flying seg-
ments in the pipe is less than the congestion window. If
there are no holes, new data is sent. When an ACK ac-
knowledges everything sent before fast recovery was en-
tered, the TCP leaves fast recovery.

Due to the ability to recover from multiple lost seg-
ments in one RTT, it has been shown that TCP SACK
provides a better performance than other versions of
T C P [4], [14]. In addition, experiment results also show
that TCP SACK is more efficient on noisy large BDP
(bandwidth-delay-product) connections [15].

111. THE PROPOSED METHOD

The proposed method is a variant of T C P SACK. It
attempts to differentiate losses by the use of tagged seg-
ments. Differentiation is facilitated by a new conges-
tion detection mechanism, whereas segment losses are no
longer directly interpreted as congestion warning unless
a tagged segment is declared lost.

A . Tugged Segments

Tagged segments are equivalent t o normal TCP seg-
ments except that the priority bit in their I P header is set

low. Like normal segments, payload information is also
carried by tagged segments; thus, they must be recovered
if they are lost. To T C P receiver, a tagged segment looks
exactly the same as a normal segment, since its IP header
would have been removed.

Use of low-priority segments can also he found in 1131,
[E], and [23]. They are used as probing packets to mea-
sure the available bandwidth in the network [13], [23], or
are used to carry information to the receiver more rapidly
without harming other flows [16]. In this paper, tagged
(low-priority) segments are used to provide the sender
with the information of network congestion.

In the proposed method, one segment is tagged at the
source per every window worth of segments. When an
ACK returns to acknowledge successful reception of the
previously tagged segment, a next segment is tagged, even
when the TCP is undergoing a fast recovery.

B. Droppzng Polacy ut Routers

The proposed method requires the support of a new
dropping policy at routers. Under this new dropping pol-
icy, whenever congestion loss occurs a t a router, a n e
tification is generated by forcefully dropping one tagged
segment a t the router. If no such tagged segment is avail-
able, the next arriving tagged segment will be dropped,
even though the router may become not congested as it
arrives. Dropping a tagged segment serves as a notifica-
tion to cover congestion losses that have occurred since
the drop of the last tagged segment. Loss of a tagged seg-
ment will be eventually detected at the sender via SACKS
to serve as a signal indicative of congestion.

It should be noted that a tagged segment may he force-
fully dropped when the buffer is actually not full. The
impact of such extra drop can be either of the following
two. One is that this extra drop may lead the T C P to
reenter fast recovery. We shall later in Sec. IILD.1 illus-
trate that fast recovery reentering is vital for the proposed
method. The other is that TCP may take more time to
recover losses. It is because that, although TCP SACK
is able to retransmit multiple losses in one RTT, it in no
way says that no matter how many segments are lost all
can be retransmitted in one RTT. Thus, the TCP may
take an additional RTT to continue to recover losses due
to the extra drop [24]. We have performed simulations to
examine its impact on Performance in Sec. N.B; as will
be seen, degradation turns out t o he very light.

C. Differentiation Rule

In the proposed method, differentiating losses between
congestion and corruption is performed at the end of fast
recovery according to whether a tagged segment has been
lost in the window upon entering fast recovery. Under
our new dropping policy, if loss of a tagged segment
is found there exists at least one segment loss due
to congestion; otherwise, all losses are due to cor-
ruption. When congestion loss is detected, the TCP

1731

must slow down its sending rate, even if there is only one
segment loss that is due t o congestion. On the contrary,
when losses are concluded as due to corruption. the trans-
mit window is restored to the value before fast recovery
was entered.

Unfortunately, loss of a tagged segment may be due
to not only congestion at a router hut also corruption
on the wireless link. Differentiation is conservative by
assuming that a congestion event has occurred in this
case. However, when a tagged segment is not lost, the
survival would provide TCP with a strong indication that
no congestion has occurred on the path; thus, all segment
losses can he concluded as due to corruption.

Due to that loss of a tagged segment is used as a con-
gestion notification, our method involves changes at the
sender and routers only. No modification of software is
required at the receiver. Furthermore, our congestion no-
tification mechanism is robust, since the signal provided
is ohviously free from any further damage as it loops back
to the sender.

D. Reliabrlity of the Proposed Method
The proposed method poses two main threats to reli-

ability. One is that delayed congestion notification may
result from delayed drop of a tagged segment. Another is
that route may change.

D. l Delayed Congestion Notification

Under the new dropping policy, as mentioned in Sec.
III.B, whenever a congestion loss occurs at a router, one
tagged segment needs to he dropped in order t o generate a
notification. If none is available, the next arriving tagged
segment is dropped. This results in the following two
scenarios.
1. The tagged segment to he dropped is sent before
TCP’s entering fast recovery. In this case, the segment
would have appeared in the window when fast recovery
is entered. Loss of this tagged segment shall be detected
at the end of fast recovery, and used to notify of network
congestion.
2. The tagged segment to he dropped is a new data seg-
ment that is sent during fast recovery. This occurs when
there are no holes in the window and the number of seg-
ments in the pipe is less than the congestion window,
as mentioned in Sec. 1I.B. If all losses in the window
upon entering fast recovery have h e n recovered, TCP
will leave the current fast recovery. In this case, loss of
the tagged segment shall be detected in the next fast re-
covery. According to our differentiation rule, a sender
does not reduce its rate until a congestion is notified.
Thus, sender’s response to a congestion event has to he
delayed till when loss of the tagged segment is detected at
the end of a later fast recovery. The delay would amount
to ahout one RTT, i.e., the duration of a fast recovery.

To solve the above problem, one possible solution is
to inject more tagged segments into every window. This

10 MbpsI40 msec 2 Mbpd0.0l ,250 msec
gateway

Servel 0-0 0 receive!

wired link wireless link

(4

IOMbps/lOmsec 10 MbpdO-PO msec
eatewav

1.1
link 1 link 2

(b)
Fig. 1. The topology in the simulations of (a) a TCP connection

over a wireless link and (b) a wired connection.

would force the first scenario to occur more often, and
would thus lessen the occurrence of the second. However,
the increase would raise the ambiguity or vagueness of our
proposed signal, due t o increasing chance that tagged seg-
ments are rather corrupted by channel errors. This would
as a result reduce the degree of improvement offered by
our method.

D.2 Route Changes

In practice, the route of a TCP connection may un-
dergo changes during its lifetime, although route changes
are normally infrequent 1251. If the ronte has changed
while a congestion event occurs in the old path, conges-
tion notification may not be generated by the new path.
Without congestion notification, the sender does not r e
duce its transfer rate. However, this does no harm to the
network since sender has no need t o reduce its rate if no
congestion develops along the new path.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, throughput performances of the pro-
posed method and TCP SACK are compared via simula-
tions. The simulations are conducted using the TCP ns-2
simulator of LBNL (Lawrence Berkeley National Lahora-
tory) [26]. The traffic is assumed to he FTP transfers.
The size of each transferred file is 1 Mhytes, and the
length of a segment is 1,000 bytes.

A . TCP Connections over Wireless links
In this section, performance of the proposed method is

examined over a wireless link. The topology in the sim-
ulations is depicted in Fig. 1 (a). It consists of a server,
a gateway, and a receiver. The wired link between the
server and the gateway can he viewed as a path through
routers in the Internet. Its bandwidth is assumed to he
10 Mhps [6], [17], and its delay is assumed to be 40 msec
[14], (171. The bandwidth of the wireless link between the

1732

mo,

I

I
1 2 3 1 I 6 7 B 'i lo

m e a DdY.I...rd,mt(r,

0 0

(b)

Fig. 2. Comparison of throughput performance over (a) a low delay
noivy link and (b) a long delay noisy link.

gateway and the receiver is 2 Mbps [7], [17]. But its delay
is taken to be either 0.01 [6] , [7] or 250 msec. The for-
mer may correspond to a low delay link such as a wireless
LAN or cellular system; while the latter may represent a
long delay link such as a satellite link.

Correlated channel errors are applied to the wireless
link, and are modeled as a two-state, a good state and
a bad state, Markov process [IS]. The residual time in
either state is exponentially distributed. The mean good
state period is fixed at 100 msec; while the mean bad
state period is varied from 1 to 10 msec to reflect various
channel conditions. Segment transmissions are assumed
to be successful in a good state and corrupted in a bad
state, with probability both equal to one. After 100 inde-
pendent runs, the results are used to calculate the mean
TCP throughput with a 95% confidence interval.

A . l Low Delay Noisy Links

In this section, the throughput performance of the pro-
posed method is compared with TCP SACK over low de-
lay noisy links. In Fig. 2 (a), our method significantly
outperforms TCP S.4CK, especially for short mean bad
state period. The throughput is improved hy 83% for
mean bad period equal to 1 msec, 63% for 5 msec, and
47% for 10 msec. The substantial improvement is mainly
due to the fact that the proposed method avoids unneces-
sary activation of congestion avoidance mechanism, when
segment losses are due to corruption and when they are
correctly identified.

The advantage of our method becomes less substan-
tial for long bad state. It is because that burst length is
proportional to the duration of the bad state. As burst
length increases, the chance of a tagged segment being
hit by channel errors increases. Once a tagged segment is
lost, even though the loss may be due to corruption, con-
gestion is assumed according to our differentiation rule.
This results in unnecessary window reduction, a conse-
quence equivalent to what the original TCP SACK would
have; thus, no improvement is seen in this case.

It is clear that improvement offered by our method
relies heavily on the survival of tagged segments when
channel errors occur on wireless links. In our proposed
method, if more protection can be placed on tagged seg-
ments a t the link level, further improvement is antici-
pated. Ideally, if tagged segments can be completely
shielded from channel errors, the proposed method should
perform exactly the same as those employing explicit n&
tification.

.4.2 Long Delay Noisy Links

Channel errors are shown to have more severe effect on
TCP performance over long delay links [13]-1151. It is due
to that slow growing of window size after the congestion
window is halved in reaction to a segment loss.

In this section, the performance improvement achieved
using our method over long delay noisy links is examined.
As shown in Fig. 2 (b), our method still performs better
than TCP SACK by 77% for mean bad state period equal
to 1 msec, 48% for 5 msec, and 44% for 10 msec. Compare
with the previous section, as expected both methods drop
dramatically in throughput over long delay noisy links by
about 80%. However, loss in improvement of our method
over TCP SACK is light, by less than an average of 10%.

B. TCP Connections ouer Wireline Links

In this section, performance of our method is examined
on a connection that consists of wireline links only. The
topology in the simulations is depicted in Fig. 1 (b). It
consists of a server, a router, and a receiver. The link '1'
between the server and the router and the link '2' between
the router and the receiver are both wireline of 10 Mbps.
The delay of link 1 is fixed at 10 msec; while the delay of

1733

1-0 I 151 P;. K . G. Samaraweera, “Non-congestion Packet Loss Detection
for TCP Error Recovery Using Wireless Links,” IEE Pm.-
Commun., vol. 146, no. 4, pp. 222-230, Aug. 1999.
C. Parsa and J. J . Garciil-Luna-Aceves, “Differentiating Con-
gestion YS. Random Loss: A Method for Improving T C P Per-
formance over Wireless Links,” IEEE W C N C 2000, vol. 1, pp.

[GI

..
90-93, 2000.
R. Ramani and A. Karandikar, “Explicit Congestion Notifi-
cation (EChl in T C P over Wirelevs Network.” IEEE Inter-

[7]
, , e 4 u a o nationol Conference on Personal Wireless Communications

W. Ding and A. Jamalipour, “A New Explicit Loss Notifica-
tion with Acknowledgement for Wireless TCP,” IEEE Inter-
national Symposium on Personal, Indoor and Mobile Radio
Communications, 2001, vol. 1, pp. 6SG9, Sept. 2001.
J. A. Cobb and P. Agrawal, “Congestion or Corruption? A
Strategy for Efficient Wireless T C P Sessions,” IEEE Sympo-
sium on Computers and Communications, pp. 262-268, 1995.

1101 F. Pew, S. Chew., and J . Ma. “An Effective Way to

2000, pp. 495-499, 2000.
[8]

- 0

191
0 10 20 24 re 50 fa 70 em $3

.mp*sa,londda~ollm** (W,

0.0

. .
Fig. 3. Comparison of throughput performance on a wired connec- Improv; T C P Per6rmance in W/reless/Mobile Netwokks,”

IEEE/AFCEA EUROCOMM 2000. DD. 250-255. 2000. .:--
LIYII.

l i l l R. K.‘Balan. B. P. Lee. K. R. R. Knmar. L. Jacob. W. K. 6.

link 2 is varied from 0 t o 90 msec to reflect various RTT
values of a TCP connection.

3, performance of the proposed
method is almost equivalent to that of TCP SACK on
a wired connection, with a very slight average degrada-
tion of only 2.2%. In the simulations, performance loss
of the proposed method is mainly due to the additional
time taken for TCP to recover a possible extra drop (of
a, tagged segment) as discussed in Sec. 1II.B.

As shown in Fig.

V. CONCLUSIONS

In this paper, we have proposed a method to improve
the performance of T C P SACK over wireless links. The
proposed method is made possible by the use of tagged
segments accompanied by a new dropping policy. In the
proposed method, a sender is able to discern congestion
from corruption in large likelihood. In contrast to most
other existing approaches employing explicit notification,
our method is attractive in that it requires no modifica-
tion a t the receiver. However, a support is required at
the routers to generate congestion notification signals by
dropping tagged segments. Through simulations we have
compared the performance of our proposed method with
TCP SACK over both low and long delay noisy links.
The results show that our method significantly improves
TCP SACK over a wide range of channel conditions in
both environments.

REFERENCES
[l]

[2]

G. Huston, “TCP in a Wireless Word,” IEEE lntemet Com-
puting, pp. 82-84, MarchIApril 2001.
E Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani, and R. D.
Gitlin, “AIRMAIL A Link-layer Protocol for Wireless Net-
works,” ACM/Baltzer Wireless Networks, vol. 1, pp. 47-60,
Feb. 1995.

[3] H. Halakrishnan, S. Seshan, and R. H. Katz, “Improving
T C P j l P Performance over Wireless Networks,” Pmc. 13t
ACM Conf. on Mobile Computing and Networking, pp. 2-11,
Nov. 1995.
C. Partridge, and T. J. Shepard, “TCP/ IP Performance over
Satellite Links,” IEEE Network, pp. 4449 , Sep./Oct. 1997.

[4]

, , ~~

Seah, and A: L. Ananda, “TCP HACK: T C P H&r Cheek-
sum Option to Improve Performance over Lossy Links,“ IEEE
lnjocom 2001, pp. 309-318, 2001.

[I21 S. Floyd, “A Report on Recent Developments in TCP Congen-
tion Control,” IEEE Communications Magazine, pp. 84-90,
April 2001.

[13] I. F. Akyildiz, G. hlorabito, and S. Palazzo, “TCP-Peach: A
New Congestion Control Scheme for Satellite I P Networks,”
IEEE/ACM Pans. on Networking, vol. 9, No. 3, pp. 307-321,
June 2001.

[I41 1. Minei and R. Cohen, “High-Speed Internet Access Through
Unidirectional Geostationary Satellite Channels,” IEEE J. Se-
lect. Areas Commun., vol. 17, no. 2, pp. 345-359, Feb. 1999.

[15] C. P. Charalambas, V. S. Frost, and J. B. Evans, “Perfor-
mance of T C P Extensions on Noisy High BDP &etworks,”
IEEE Communications Letters, vol. 3 , no. 10, pp. 294-296,
1999.

[IG] V. N. Padmanabhan and R. H. Kats, “TCP Fast Start: A
Technique for Speeding up Web Transfers,” Pme. IEEE Globe-
com Internet Mini-GonJerenee, Nov. 1998.

(171 S. hlascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R.
Wang, “TCP Westwood Bandwidth Estimation for Enhanced
Wansport over Wireless Links,” Pmceedings oJACM Mobieom
2001, pp. 287-297, July, 2001.

[I81 M. Zurzi, A. Chockahgun, and R. R. Rao, “Throughput
Analysis of T C P on Channels with Memory,” IEEE J. Select.
Areas Commun., vol. 18, No. 7, pp. 128%1300, July 2000.

1191 S . Floyd and K . Fall, “Promoting the UseofEnd-to-End Con-
gestion Control in the Internet,” IEEE/ACM %an$. on Net-
working, vol. 7, no. 4, pp. 458472, August, 1999.

[20] K. Ramakrishnan and S. Floyd, “RFC 2481: A Proposal to
Add Explicit Congestion Notification (ECN) to IP,” Jun. 1999.

[21] M. Allman, “A Web Server’s View of the Transport Layer,”
ACM Comput. Commun. Rev., vol. 30, no. 5, pp. 10-20, Oct.
2000.

1221 M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “RFC
2018: T C P Selective Acknowledgement Options,” Oct. 1996.

1231 G. Bianchi, A. Capone, and C. Petrioli, “Throughput Analysis
of End-twEnd Measurement-Based Admission Control in IP,”
Fmc. IEEE InJmom, vol. 3 , pp. 1461-1470, March 2000.

[24] R. Goyal, R. Jain, S. Kalyanaraman, S. Fahmy, B. Vandalore,
and X. Cai, “Selective Acknowledgements and UBR+ Drop
Policies to Improve TCPjUBR Performance over Terrestrial
and Satellite Networks,” ATM Forum/97-0423, April 1997.

[25] V. Paxson, “End-to-end Internet Packet Dynamics,” Proceed-
ings of SIGCOMM’97, pp. 139-152, 1997.

[ZG] S . McCanne and S. Floyd, “Ns (network simulator),” [online].
Av&able WWW: http://www-nrg.ee.lbI.gov/ns.

1734

http://www-nrg.ee.lbI.gov/ns

