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Abstract 
In this paper, we focus on the design issues of 

applying SPC control chart to end-of-line wafer 
acceptance test (WAT) data. Since the sequence of 
end-of-line data is not the same as the sequence in each 
process step, an abnormal trend in any of the process 
steps is more difficult to detect based on the end-of-line 
data than based on single process data (if available). 
To overcome this deficiency, we propose an 
exponentially weighted moving average method for 
sequence-disordered data ( E W S D ) .  The basic 
idea is that moving average can smooth out the 
sequence-disordered effect and weighting factors allow 
us to choose an effective window size so that the 
underlying trend can be popped out. It is different 
from the traditional EWMA method as it has the 
capability to handle the sequence-disordered data. An 
end-of-line trend detection system has been developed 
for validation of the method, which consists of three 
modules: run length distribution generator, optimal 
parameter generator, and EWMA/SD control chart. 
Based on process characteristics, the corresponding run 
lengths of an E W S D  control chart for different 
parameter vectors are derived by the Markov chain 
approach. The optimal parameter vector is chosen as 
the one which meets the requirement for maximum 
false alarm rate and maximizes the detection speed at 
the same time. Results of simulation and field data 
validation. show that E W S D  is able to smooth out 
the sequence-disordered data, be sensitive to process 
changes, and be robust to nature noise. 

1. Introduction 
Statistical process control (SPC) charts, such as 

Shewhart chart, exponentially weighted moving 
average ( E M )  chart and CUSUM chart, have been 
widely applied to semiconductor manufacturing to 
detect abnormal trends such as process drift and shift. 
In this paper, we focus on the special design issues 
when applying SPC techniques to monitor the end-of- 
line data. End-of-line data mostly refers to the WAT 
data taken after completing the whole fabrication 
process. It provides important integration status and 
facilitates early detection of abnormal trends to prevent 
series yield crisis. 

However, control chart techniques cannot be 
applied to end-of-line data without caution. Since the 

sequence of end-of-line data is not the same as the 
sequences in each processing machine, our empirical 
data characterization indicates that an abnormal trend 
in any of the processing machines is more difficult to 
detect using end-of-line data. To overcome this 
deficiency, we propose an EWMA/SD method. It is 
different from the traditional EWMA method as it has 
the capability to smooth out sequence-disordered data 
and to choose an optimal parameter vector so that the 
underlying trend can be popped out. 

2. Current Practice 
A current fab practice of the end-of-line SPC 

adopts a heuristic, biweekly SPC review to monitor the 
"sequence-disordered" data. Under this method, the 
process capability metric Cpk [ 11 values of key end-of- 
line parameters are monitored every two weeks. If 
any one of the Cpk values is less than the 
corresponding threshold values specified by engineers, 
a problem might have occurred and the corresponding 
control charts must be reviewed to see if there is any 
significant trend. The philosophy of this method is to 
reduce the sequence-disordered effect by plotting the 
data in a two-week time period so that the trend pattern 
could be identified more easily. Several problems 
arise with the use of this method 
a the threshold value of each end-of-line item is 

empirical, 
a a trend pattern is identified by engineers 

subjectively, and 
0 a two-week time period for trend detection is too 

long. 

3. Sequence-disordered Effect 
To overcome this deficiency, we first 

characterize the sequence-disordered effect by 
analyzing the end-of-line data generation process. 
Capturing the problem features, we then propose an 
E W S D  method to enhance the detection resolution 
and speed. 

Let {xi) be a random sequence representing 
wafer lot averages of a measurement item taken at 
process step P ,  and (Yk} be a random sequence 
representing wafer lot averages of a physically related 
measurement item (to x) taken at the end-of-line. 
For example, {xi) may correspond to an in-line 
measurement such as dopant concentration and 
deposited layer thickness of lot i at step P , and {rk) 
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may correspond to an electrical test measurement such 
as a threshold voltage or a saturation current. Based 
on the physical laws, {Yk) can be expressed as a 
function of ( x i  . 

In general, affected by different process flows 
and dispatching polices, the cycle time from process 
step P to the end-of-line step is not constant among 
lots. As a result, the lot with sequence label i at step 
P very likely has a different lot sequence label k at the 
end-of-line step. Define the sequence-disordered 
grade R of the lot from step P to the end-of-line as 
k - i  . Then the range of R can characterize the 
sequence-disordered effect, which is noted as 
sequence-disordered range R*. If we further define 
(zj as a sequence that reorders (rk) according to lot 
sequence at step P ,  the end-of-line data generation 
process can be illustrated as that in figure 1. 

To monitor the trend in process step P , we can 
exploit the sequences (xi), (23 or ( Y ~ I  . Usually, the 
in-line sequence { x i )  might be missing or not available. 
There is also a limitation in tracking back (zj from the 
historical data base because there are too many process 
steps to monitor. The required computer memory and 
processing time would be too much if we trace all 
process steps. Therefor, our approach is to detect the 
trend by exploiting end-of-line sequence ( ~ k )  directly. 
If a trend is identified, we then trace the most possible 
step (fault) to diagnose the root cause (figure 2). 

In order to demonstrate the sequence-disordered 
effect, a simulation is performed and results are shown 
in figure 3. As can be seen, the shift pattern is 
significant in the in-line sequence (23 but not so 
obvious in the end-of-line sequence {Yk) . Theoretically, 
the sequence-disordered effect increases both the mean 
and variance of (rk) during the transient phase, which 
results in a larger fluctuation in the transient phase as 
compared to that of a non-disordered sequence (zj. 
As a result , the trend pattern is destroyed and the 
detection becomes more difficult. Our approach is to 
smooth out the sequence-disordered fluctuation and to 
estimate the process mean based on the exponentially 
weighted moving average of (rk) as described in the 
next section. 

4. E W W S D  
4.1 Moving Average 

The fluctuation in the transient phase caused by 
sequence-disordered effect can be viewed as a type of 
noise (figure 3). Usually, the moving average (MA) is 
adopted to smooth out the noise of observation data and 
estimate the process mean [2]. The MA with size m 
of a sequence (rk) is defined by 

"4 
... 

The larger the variance of noise, the larger the MA size 
is needed to smooth it out. 

To apply MA technique to end-of-line data, we 
have to study the correlation among MA sue m ,  
sequence-disordered range R* and the trend detection 
capability. If R* is large, the interval length of 
transient phase is increased. Then a larger m is 
needed to smooth out the sequence-disordered 
fluctuation. However, the detection speed will be 
slow because a large window size is used. On the 
other hand, if m is too small, the MA will be too 
sensitive to the last few data points, which not only 
results in too many false alarms when process is under 
control but also fails to smooth out the sequence- 
disordered noise when a trend occurs. Therefor, the 
choice of MA size should be carefully studied to 
optimize its trend detection capability. 

4.2 EWMA 
EWMA is another approach preferred for trend 

detection. Because it can be implemented more 
efficiently and has the capability to resemble various 
MA with different m by changing the weighting factor 
flexibly [3][4]. 

Assume that the end-of-line sequence (&) 

defined in Section 3 follows a normal distribution with 
mean PO and variance 02. The successive values 
generated by applying EWMA to {rk) are: 

Ak = Auk + (1 - 

=Auk +n(l-A)Yk-l+. . .+A(l-A)k-lY1,  (2) 

where A O = ~ O  and o < ~ s i .  The control limits of 
{Ak)  are derived as 

p0 f hJ-0 , (3) 

where h is an adjustable control limit gain usually 
specified as 3 for a compromise between high detection 
speed and low false alarm rate. 

When EWMA is applied to trend detection of 
sequence-disordered data, we have to choose an 
appropriate window size to smooth out the sequence- 
disordered data. As shown in figure 4, we can see that 
the effective window size is determined by the 
weighting factor A .  Therefor, the objective of an 
EWMA/SD method is to choose an optimal parameter 
vector ( I  , h )  so that it can handle the sequence- 
disordered data and maximize the trend detection 
capability. 

4.3 Application 
To evaluate the performance of E W S D  

method, the concept of average run length is used, 
where run length is a random variable characterizing 
the number of observations from the time a level shift 
occurs until the shift is clearly indicated by a control 
chart [SI. The appropriate E W S D  parameter 
vector ( A  , h )  is the one which results in a large 
average run length, mi, when the process is under 
control so that the false alarm rate can be reduced and a 
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short average run length, m 2 ,  when a shift has 
occurred so that the trend detection can speed up. 

In order to overcome current practices’ 
deficiency as mentioned in section 3, an E W S D  
trend detection system has been developed. As shown 
in figure 5 ,  it consists of three modules: run length 
distribution generator, optimal parameter generator, 
and EWMA/SD control chart. Inputs to this system 
include end-of-line data and process characteristics. 
Here, process characteristics are defined as follows: 
0 M~ : total number of machines in step P 

0 R; : sequence-disordered range from step P 

0 6 : potential magnitude of the shift 
Based on these process characteristics, many 

pairs of A R L ~  and A R L ~  corresponding to different 
parameter vectors ( a , h ) are derived in the run length 
distribution generator [4], which are used as the inputs 
to the optimal parameter generator. The optimal 
parameter vector is generated by two steps: 

Find all the feasible parameter vectors that can 
meet the requirement of minimum mi 
(maximum false alarm rate). 
Choose the one in the feasible parameter vectors 
that can minimize A R L ~  (maximize the 
detection speed) as the optimal parameter 
vector. 

Once the optimum parameter vector is generated, 
it is used for the EWMA/SD control chart to perform 
trend detection. If any EWMMSD value is out of 
control limits, an out-of-control signal is generated and 
integration engineers must find out the root causes as 
quickly as possible to prevent further yield crisis. 

5. Data Validation 
The simulation data generated in Section 3 is 

used for evaluating the effectiveness of EWMA/SD. 
Process characteristics in this case are ?dp = 1 ,  R; = 50 , 
s =io,  and the minimum mi requirement is set as 
300, which corresponds to an optimal vector 
( ~ , h )  = (o.i,2.75), As shown in figure 3, EWMA/SD 
lines not only show more significant trend patterns than 
the original end-of-line data but also avoid the false 
alarm by the traditional Shewhart SPC at the 63th data 
point. We can see that the use of optimal weighting 
factor ( A  = 0.1 ) results in a faster detection speed than a 
lower value ( a  = 0.01 ). However, if a becomes close 
to one, EWMA/SD values will be the same as the 
original end-of-line data which resembles the Shewhart 
chart ( (ah) = (19) ) and shows no abnormal trend. 

Next, real fab data is used for method validation. 
In this case, there is a shift in the standard deviation of 
end-of-line measurement Vt-P3. The nature log of 
standard deviation is plotted in figure 6, which seems to 
drift slowly over time due to the sequence-disordered 
effect. If we trace the end-of-line sequence back to the 

to the end-of-line step. 

1. 

2. 

in-line step (a well-implant step, M~ = 3, R; = 75 ), we 
can see a significant shift pattern in one of the three 
machines. The amount of shift is determined as 
i q < 6 < 2 0 ~ .  Then the optimal E W S D  
parameter vector is derived as (a,h) = (0.08,2.75), which 
results in an earliest detection of all. When the 
weighting factor is too small (e.g.,n=o.oi), the 
E W S D  cannot detect any abnormal trend. 

6. Conclusions 
In this paper, we focus on the trend detection of 

sequence-disordered end-of-line data. An E W S D  
method is proposed and analyzed. It can generate the 
optimal parameter vector based on the process 
characteristics. The results of simulation and fab data 
validation show that E W S D  method smoothes out 
the sequence-disordered data, is sensitive to process 
change, and is robust to nature noise. 
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Figure 2 A framework for end-of-line trend 
detection and diagnosis 
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Figure 3 A simulation to demonstrate the sequence- 
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Figure 5 An E W S D  trend detection system 
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Figure 6 Fab data validation for the E W S D  
trend detection capability 
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