
ice can be seen aligned at the corners of an inner square. Fig. 2b 
shows the parallel polarisation image (Jl) of the target (the polar- 
iser in front of the CCD is parallel with the polarisation of the 
illuminating light) while Fig. 2c shows the perpendicular image 
component (ZJ. As discussed above, ice depolarises light much 
more than metal. As a result, the ice in the parallel image appears 
darker than the metal, while in the perpendicular image the ice 
appears brighter than the metal. Fig. 2d shows the image obtained 
after subtraction of the two images' components [ J ,  - IJ.  The 
image in Fig. 2e was obtained by performing the [(Jl ~ Z,)/ZJ 
image operation (division over the perpendicular image after sub- 
traction). In the resulting images shown in Fig. 2d and e, the ice is 
recorded with much less intensity than the metal. This demon- 
strates the usefulness of this technique for ice detection and imag- 
ing. The image operation (4, - I,) leads to an image formed by 
polarised photons. Since metal depolarises light much less than 
ice, the clear metal surface in the polarisation difference image 
appears much brighter compared to ice. This approach provides a 
means for imaging and detection of the parts of the metal surface 
containing ice layers. The 4, ~ ZL operation allows for the rejection 
of the image information arising from unpolarised background 
illumination from sunlight or field lighting which is evenly distrib- 
uted in both image polarisation components and cancelled out 
after subtraction. 
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Fuzzy modelling using wavelet transforms 

Chuan-Kai Lin and Sheng-De Wang 

e d I%l?4 

Fig. 2 Imaging of ice on metal 
a Image of target with no polariser in front of CCD 
b Parallel polarisation image ( 4 )  of target (polariser in front of CCD 
is parallel with polarisation of iiluminating light) 
c Perpendicular image component (I,) 
d Image obtained after subtraction of two images components [Jl - 
7 1  
'LJ 
e the [(I,, - I J I J  image (division over the perpendicular image after 
subtraction) 

Detection of ice can be performed by either scanning or flood- 
ing the wing of an airplane with a polarised light beam and detect- 
ing point-by-point the depolarisation of the reflected light. The 
intensities of the two polarisation components of the initially 
polarised beam are simultaneously measured and the ratio of the 
parallel over the perpendicularintensities from each point on the 
wing(qI/Z,) is estimated. From the image shown in Fig. 2, the ratio 
R = J,/Il was measured to be R,,, 40 for the clear metal part 
and R,,,,, - 2.25, &,5mm - 1.4, Rlmm = 1.25, and R2mm - 1.2 for 
the ice layers on metal with thickness 0, 0.25, 0.5, 1 and 2mm, 
respectively. These results indicate that when the ratio is high [ (J , /  
I,) >> 11, then the wing is free of ice in accordance with results 
shown in Fig. la. When the ratio becomes nearly 1 (1 < (J,/I,) < 3) 
there is ice on this part of the wing. 

This work demonstrates the potential for an ice detection imag- 
ing system for aviation applications. 
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Indexing terms: Neural networks, Fuzzy neural nets, Wavelet 
transforms 

A new approach to fuzzy modelling using wavelet transforms is 
proposed. A fuzzy inference system with some minor restrictions 
and modifications can function as a discrete wavelet transform. 
The feasibility of the proposed fuzzy model is proved by 
modelling a highly nonlinear function and comparing it with 
previous research. 

Introduction: Control engineers always face the problems of mod- 
elling systems that could be so complex and nonlinear as very dif- 
ficult to obtain. Fuzzy models have provided a good solution to 
overcome this problem. However, fuzzy systems require formal 
synthesis techniques that guarantee global stability and acceptable 
performance [l]. In this Letter, we show that fuzzy models, with 
some restrictions and modifications, can be functionally equivalent 
to discrete wavelet transforms. Therefore, the fuzzy models can 
take advantage of the rigorous approximation theory of wavelet 
basis function expansions as well as offer a framework for com- 
bining linguistic information and numerical data in a unified 
fashion. 

Discrete wavelet transforms: Given a function y~ E L2(R"), consider 
the sequence functions {y~,,~} generated by dilating and translating 
the mother wavelet function y~ into the following form: 

$ j , k ( z )  = det Di'2$(Djz - hkk) (1) 

wherej = ...j,]' E 2, k t 2, the dilation matrix 0, = diag(a,l, 
..., aJn);the translation matrix Ai, = diag(b,, ..., bJ, a > 1, a E R, b 
= (b,, ..., b,) E E. Conditions on v, a and b to form a multiscal- 
ing wavelet frame for L2(E) have been obtained and are given in 
[4]. Then, consider a class of multidimensional wavelet functions 
as generalisations of ID wavelet functions [4], i.e. 

4b) = 41(z1) ' . .$n(ZTJ (2) 

The sequence functions { y ~ ~ , ~ }  are a set of wavelet basis functions 
to constitute a frame for a class of functions f E L*(R") to be 
approximated. Therefore, f can be reconstructed by the expansion 
of {w/,,~} exactly [3]. In this Letter, the mother wavelets have the 
form 

@i(&) = gi(zi)e-"- (3) 

satisfying JvL(xL)dxi = 0. For example, the 'Mexican Hat' mother 
wavelet function is 

$&;) = at(l - a,Z;)e--/2 

Substituting the 'Mexican Hat' mother wavelet function into eqns. 
1 and 2 yields 
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Functional equivalence between wavelet transforms and fuzzy mod- 
els: The rule format of the proposed fuzzy model can be written as 
follows: 

Rule m : if x is A,1 and __. and x, is A,, 
then y j  = d m g m , l ( n )  . ‘ .  gm,%(xn) (5) 

where a,,, am*, ... and Jrnfl are fuzy sets with Gaussian member- 
ship functions, g,,((xJ are functions shifting and scaling g,(x,), and 
d, are real coefficients. By applying the min-product inference 
process, the output y, is 

n g [L I1 (mm,1(4] 
n (6) 

1=1 
Y3 = c n PAmI(Q) 

m 1 4  

where index j = b,, ... j J T ,  and L L ~ ~ ~ ( X J  is the membership function 
of A,,. The fuzzy rule base is implemented by multiple fuzzy rule 
bases corresponding to the multiresolution wavelet functions. The 
output yj is the output of fuzzy rule base j corresponding to a res- 
olution. Assume the centres of membership functions of linguistic 
terms are equally spaced. For a given resolution j ,  the centres of 
fuzzy basis functions are located in lattice points in P. Denoting a 
sequence of basis vectors for the lattice as {z1, _ _ _  Zn}, and the lat- 
tice points can be represented by 

q k  = kluJ1 blZ1 + . . . + k,ajnb,e‘, (7) 
where aJib, is the sampling space in ith dimension. From the geo- 
metric point of view, each lattice point is a fuzzy basis function 
@,,I<: 

e - ( Z c - n k ) T ” l j  ( Z - V k )  

h k  = e-(x-qs)=w,(x-T7k) (8) 
k € Z ”  

where 
fuzzy rule base is of the form 

= diag{a,/(aji)2, ..., a,z 1 (ah)’}. Hence, the output of each 

Method 
Proposed fuzzy model 

Six-order polynomial 
Cascaded-correlation NN 
Linear predictive 

Back-propagation NN 

k 
where U C , ~  = g,kl(x,) ... g,lcn(xn)@,k and d / k  are real coefficients 
Take eqn. 4 as an illustration, g, ,,>(xJ = cr/i*a,[l-a,a J~x,-b,k,)*] 
Applymg the proposed fuzzy model to approxmate function f is 
as follows 

f = Y3 = d 3 , k $ 3 , k  (10) 
3 3 k  

Therefore, it is easy to show the eqwvalent functional behaviour 
of the multiresolution wavelet transform and the proposed fuzzy 
model 

There are various update laws for tuning coefficients of eqn 10, 
such as LMS, Kalman filter algorithms, and the back-propagation 
law The fuzzy model may consist of two parts one is rules 
extracted from experts and the other is the rules learned from 
numerical data as described above. 

Training cases NDEI 
500 0.017 
500 0.02 
500 0.04 
500 0.06 

2000 0.55 

Simulation: The highly nonlinear function modelled and predicted 
in our simulation is the chaotic Mackey-Glass equation: 

0.22(t  - 7 )  

1 + zlO(t - 7 )  
X(t)  = - O.lz(t) (~(0) = 1.2, 7 = 17) 

(11) 
The 500 training and 500 checking data are in the following form: 

[ ~ ( t  - 18)rc(t - 12)2(t - 6 ) x ( t ) ] l ~ ( t  + S)] 

We only use a single fuzzy rule base (single resolution) in this 
example The output of the optimal fuzzy rule base, f’ = C, dkvk ,  
is estimated by the actual fuzzy output y =-C,dk~k gnd distur- 
bance rejection signal w That is, we use f = C,dkwic + 1;; to 
model and predict x(t+6) The update laws are 

Conclusions: This Letter presents a fuzzy model that can function 
equivalently to discrete wavelet transforms. Furthermore, the piv- 
otal concept of multiple fuzzy rule bases derived from multiresolu- 
tion wavelets improves the approximation accuracy. From the 
smulation result, the proposed fuzzy model can be applied to the 
problems of function approximation, system identification and 
control. 
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Indexing tevms: Optical communication, Nonlinear optics 

The eye hagram of a 100GbiVs optical signal has been 
successfully measured usmg sum-frequency-generation optical 
sampling, which uses an organic crystal (AANP 2- 
adamantylammo-5-nitropyr1dme) with hgh optical nonlineanty to 
mprove the signal-to-noise ratio of the measured waveform 
Using tlus method, a signal-to-noise ratio > 17dB is obtamed at a 
signal peak power of 270mW 
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