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An approach using wavelet transforms to construct a fuzzy model is proposed. This paper 
shows that a fuzzy inference system with some minor restrictions and modifications can 
function as a discrete wavelet transform. In the proposed fuzzy inference system, each fuzzy 
rule is analogous to a wavelet basis function multiplied by a coefficient. Due to the 
functional equivalence between wavelet transforms and fuzzy inference systems, the fuzzy 
inference system can share the advantages of wavelet transforms. 

1. Introduction 

Wavelet theory has advantages over Fourier transforms in analyzing physical 
situations where the signal contains discontinuities and high frequency components. 
Wavelets have successfully applied to many fields including image processing, 
subband coding, acoustics, radar and mathematics applications [8]. 

Control engineers often face the problems of controlling and modeling systems 
which are so complex and nonlinear as very difficult to obtain. Fuzzy models have 
provided a good solution to overcome this problem. However, fuzzy systems 
require formal synthesis techniques that guarantee the global stability and 
acceptable performance [3]. In this paper, we hope to show that fuzzy models with 
some restrictions and modifications can be functionally equivalent to discrete 
wavelet transforms. Therefore, the fuzzy models can not only offer a framework for 
combining linguistic information and numerical data in a unified fashion but also 
take advantages of the rigorous approximation theory of wavelet basis function 
expmgiong. SO far as w e  know, this is the first article tu discuss the relationship 
between fuzzy models and wavelet transforms. Hence, both the application domain 
of wavelet transforms and the performance of fuzzy models can be promoted. 

In order to benefit from the discrete wavelet transform, we modify the general 
fuzzy models, the Takagi-Sugeno’s model [ 11 and fuzzy basis function expansions 
[3], such that each fuzzy rule can be viewed as a wavelet basis function multiplied 
by a real coefficient. The firing strength of the proposed fuzzy model is the fuzzy 
basis function and the THEN part of each fuzzy rule is a function of premise 
variables. Furthermore, we use multiple fuzzy rule bases to achieve multiresolution 
learning. A denser fuzzy rule base would correspond to a higher resolution wavelet 
hc t ion ,  which is suitable to model a given dense data range. 

The paper is organized as follows. In section 2, we review the 
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multidimensional wavelet frames. The architecture of a fuzzy model which is 
functionally equivalent to the discrete wavelet transform is presented in section 3. 
Section 4 then concludes the paper. 

2. Discrete Wavelet Trnsforms 

Given a function y E L2( R" ) , consider the sequence functions {Y,,~} generated by 
dilating and translating mother wavelet function y in the following form 

y,,,(x)= detD:/2y(Djx-A,k), (2.1) 

where j = [ j l  a - .  jnIr E T ,  k~Zn,thedilationmatrix 0, =diag(a'i,..-,a'-), 
the translation matrix Ak = diag(b,,...,b,), a>l, a E R ,  b = (b, , . . . ,b,)  ER" . 
Conditions on y ,  a and b to guarantee that a multiscaling wavelet frame for 
L2(R")  has been obtained and are given in [ll]. In other words, to construct a 
multidimensional wavelet function is to find a wavelet function that satisfies the 
sufficient conditions. Thus, let the multidimensional wavelet functions be the 
generalizations of one-dimensional wavelet functions, i.e., 

That is, applying one-dimensional wavelet transform separately in each of n 
orthogonal directions, we have 

where @ ; ( m i )  is the Fourier transform of y j ( x j ) ,  which must satisfy the 
admissibility condition 

For a given function y (x, ) with adequate decay at infinite, (2.4) is equivalent that 
each v , ( x i )  has zero mean (jv,(x,)dy, = 0 )  [lo]. In this paper, the sequence 
functions {y,,,} are a set of wavelet basis functions to constitute a frame for a class 
of functions f E L2(R")  to be approximated; i.e., there exist two constants A>O 
and B<w, such that 
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Then, due to the dual frame property, the function f EL' (R")  can be 
approximated by 

where the dual frame has the relation @ J,k  = A-'y/ , , in the tight frame case (A=B>l) 
and the coefficients c,+ =< f ,  pJ,k > . Therefore, f can be reconstructed by the 
expansion of {v /  ,,,} exactly. 

A family of wavelets including the Battle-Lemarie wavelets, Meyer wavelets, 
the Haar wavelets with compact support are constructed by Daubechies [6] .  In this 
paper, the mother wavelets are of the form 

w, (x, ) = g(x, ) e - a ~ x : / Z ,  (2.7) 

where g ( x i )  is a h c t i o n  satisfmg I = 0 . If the function g ( x i )  is 
ai (1 -six,*) then v i  ( x i )  is the so called 'Mexican Hat' mother wavelet function. 
Substituting the 'Mexican Hat' mother wavelet function into (2.1) and (2.2) yields 

Equation (2.8) illustrates a way to constitute a set of wavelet basis functions with 
multiresolution to form a multiscaling frame. 

3. Functional Equivalence Between Wavelet Transforms and Fuzzy Models 

The fuzzy model proposed by Takagi and Sugeno, which is described by fuzzy IF- 
THEN rules, is of the following form: 

- - 
Rule m: IF x, is A,, and ... and x, is Amn THEN y = dm0 + d , l ~ I + ~ ~ . + d , , ~ ,  ,(3.1) 

- -  
where A,, , A,, , ... and A," are fuzzy sets, y is the output, and x = [x, x,IT 
is the input state vector. The THEN part of Takagi-Sugeno's fuzzy model is a linear 
combination of premise variables to represent local linear input-output relationship 
of nonlinear systems. A fuzzy model proposed in this paper as shown in Fig. 1 has 
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a different form as follows: 

- - 
Rulem: IF x, is A,,,, and:.. and x, is A,,," THEN yi =d,gm,,(x,)...g,,"(x,),(3.2) 

where J,,,, , I,,, ... and Zn," are fuzzy sets with Gaussian membership functions, 
d, are real coefficients, and gm,, (x,) 's are shifted and scaled functions of g(x,) in 
(2.7). By applying the min-product inference process, the output yi is 

where pZd (x,) is the membership function of z,,,, . If the firing strength of each 
rule of the proposed fuzzy model (3.2) is the fuzzy basis function, it is obvious that 
the THEN part is the products of the coefficient d,and functions of consequent 
variables instead of linear combinations of consequent variables in (3.1). The main 
purpose of this modification is to link the fuzzy model and the wavelet theory such 
that the fuzzy model can share the advantages of wavelet transforms. 

0 t 

Fig. 1 The architecture of the fuzzy model. 

Besides the modification of THEN part of fuzzy rules, the fuzzy rule base is 
implemented by multiple fuzzy rule bases corresponding to the multiresolution 
wavelet functions. A sparse fuzzy rule base is analogous to the low resolution 
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wavelet basis function. For obtaining accurate approximation, more than one fuzzy 
rule base is required. Furthermore, assume the centers of membership functions of 
linguistic terms are equally spaced. For a given resolution j = [ j ,  a - .  j,]' , the 
centers of fuzzy basis functions are located in lattice points in R". Denoting a 
sequence of basis vectors for the lattice as {.21,....2,,>, the lattice points can be 
represented by 

where a"b, is the sampling space in i-th dimension. Form the view point of 
geometry, each lattice point is a fuzzy basis function 4 j,k : 

where Wj = diug{a, l(u")';..,a, l (u ' - ) '> .  Hence, the output of each fuzzy rule 
base is of the form: 

where v ~ , ~  = gl ,k , l  ( x l ) - * - g l , k , n  ( x " ) $ ~ , ~  and dj,k are real coefficients. For example, 
it is analogous to 'Mexican Hat' wavelet basis functions, (2.8), by taking the form 
gl,k,,(x,) = ~ - " a , [ l - a , ( u - ~ ' x ,  - b , k , ) ' ] .  Applying the proposed fuzzy model to 
approximate function f, we have 

Therefore, it is easily to show the equivalent functional behavior of the 
multiresolution wavelet transform and the proposed fuzzy model. 

The update law for tuning coefficients, dJ,k , in (3.7) can use existing methods 
such as LMS, Kalman filter algorithms, and the back-propagation law. The fuzzy 
model may consist of two parts: one is rules extracted from experts and the other is 
the rules learned from numerical data as described above. 

4. Conclusions . 
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This paper presents a fuzzy model with some modifications which can 
function equivalently to discrete wavelet transforms. Therefore, not only the 
experts’ knowledge but also the numerical data can be used to train the fuzzy model. 
Furthermore, the pivotal concept of multiple fuzzy rule bases derived from 
multiresolution wavelets improves the approximation accuracy. One of our future 
work is to apply the proposed fuzzy model to the function approximation, system 
identification and control. 
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