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Discontinuities in dielectric slab waveguides have
been analyzed by many authors due to their significance
in designing various optical and millimeter wave
components, such as transformers, grating couplers,
antenna feeds and others. The unbounded structure which
leads to continuous spectrum makes the analysis of these
discontinuity problems in dielectric waveguides more
difficult than those in metallic waveguides. Mahmoud
and Beal [1] first used a complete set of "good
functions" to discretize the continuous spectrum, and
solved the problem by matching the tangential fields at
the junction of a step discontinuity. Rozzi [2] solved
an integral equation containing the junction fields by
the Ritz-Galerkin approach. These methods can tackle
the discontinuities with regular shape, namely the
step-type discontinuities. Recently, Chung and Chen [3]
treated the problems of arbitrary discontinuities in an
otherwise uniform slab waveguide. In the present study,
we will discuss the problem with arbitrary disconti-
nuities between two different slab guides (Fig.l).

Consider the structure in Fig.1l, which is wuniform
in the y-direction. The discontinuity region 2 with
refractive index n(x,z) is enclosed by three artificial
boundaries 'y, I',, I';, and the magnetic wall I'; which is
introduced due to symmetry. The regions I (0¢x<w, 2z<0)
and II (O¢x<w, z)2) are slab waveguides I and 1II,
respectively, whose refractive indices are n; and n,,
and the region III (x)X,) is free space. Note the
overlapping of regions I and III as well as II and III.
Symmetric guided TE modes, whose electric fields are
y-polarization, are incident upon the discontinuities.

From the partial variational principle [4], a

partial variational equation is obtained for the unknown

fields (Ey’ Hx’ Hz) H
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where I'=r,+r,+r,, whose outward normal is n. The inner
and outer sides of I are represented by r and T+,
i, H:) are the test fields, which
may be regarded as a set of weighting functions.

respectively. (E;, H

Eg.(1) contains the fields both interior and
exterior to the boundary T. In the finite element
solution, the interior field is represented by the nodal
values ¢i and the corresponding bases B,

Ey(ﬂ) = i ¢; By(2) . (2)
The electric fields in regions I and II are
expanded by the modes of the corresponding waveguides,
a _ a _ip® a a a
Ey = ﬁ [Amexp(+mez) + amexp(tjﬁmz)]um(x)
1]
+ E b; Jodp f;(p) ua(p;x) exp(+jpz) , (3)

where a=1 or II and the upper signs are used when a=I,
otherwise the 1lower ones are used. Am and a  are the

coefficients of the incident (known) and scattered
(unknown) mth guided mode whose modal function and

propagation constant are um(x) and Bm‘ u(p:x) and
B:VEZ— 'S are the modal function and propagation

constant of the radiation mode, respectively, with »p
being the wavenumber in the x-direction. For numerical
computation, the spectrum R(p) of the radiation modes is
discretized by a set of "good functions" fp(p), i.e.,

R(p)= Bbpfp(p)’ where bp is the corresponding (unknown)
coefficient.

The electric field in region II1I is related to the

one at the boundary x=X,
8E

o
Ey(x,z)=—J dz' G(x-X,,z-2') 5§¥(Xo,z')
- . (x,z) € III , (4)
using the Green's function G in free space

G(x-Xo,2-2"') = —% Héz)(koVix—Xoiz+iz—z'§z )y . (5)
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5;¥ in (4) is calculated from (2) when 0<z'<¢, and from
(3) when z'<0 or z'>2, thus Ey in region III can finally

be written as
- . a a a
Ey(III) g (& (F;Am + Fgam) *+ B F%bp] * f Fi¢i

(6)
where the F's are known functions of x and z.

In (1) the exterior fields associated with I', and
r, are calculated from (3), and those with I, are
calculated from (6). Casting these into (1), and using
the Ritz-Galerkin approach, one finally gets a matrix
equation of the form

AV =5 , (7)

IT . I _IXI.T
,bl,b

o pp])

and s are vectors associated with the unknown
coefficients and the incident fields, respectively.

where A is a known matrix, and ¥ (=[¢i,a;,a

To check the wvalidity of the present method, we
consider a step discontinuity shown in Fig.2. The
finite-element region @ is chosen to enclose the
junction. After obtaining the coefficients am's and

bp's, one may calculate the tangential fields at the

junction. Fig.2 shows the field distributions at the
planes z=0- and 2z=0+. The agreement of the curves
ensures the continuation of the fields, and ensures the
validity of the present method. A typical result for
reflection and transmission coefficients is presented in
Fig.3.
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Fig.l Arbitrary discontinuities between two slab guides.
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Fig.2 Tengential electric field Fig.3 Reflection and transmi-
at junction of step discontinuity. ssion coefficients of a gap.
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