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Abstract: A modified spectral-domain approach is 
proposed for an analysis of the microstrip line 
whose signal strip and ground plane have finite 
thickness and conductivity. To improve the accur- 
acy of the results, all three components of the strip 
current which have three-dimensional dependence 
are included in the analysis. With the basis func- 
tions properly chosen, this new approach can be 
treated as easily as the conventional spectral- 
domain approach. By this modified approach, 
both the phase constant and attenuation constant 
can be determined simultaneously without using 
the assumption that the skin depth is much larger 
or smaller than the signal strip thickness. In this 
work, comparison with published theoretical and 
experimental results is presented to check the 
accuracy of the new approach. In particular, the 
effective dielectric constant and attenuation con- 
stant of a microstrip line with finite metallisation 
thickness and finite conductivity are discussed in 
detail, together with the longitudinal current dis- 
tributions along the signal strip. 

1 introduction 

Previous analysis of microwave planar wave-guiding 
structures was usually conducted under the assumptions 
of infinitely thin strip and infinite conductivity. Recently, 
the problem of finite metallisation thickness and finite 
conductivity has received increased attention, because 
strip thickness may be comparable to skin depth in pract- 
ical monolithic microwave integrated circuits (MMICs). 
With metallisation thickness in the order of skin depth, 
the propagation characteristics, especially the attenuation 
constant, would behave different from previous ones 
which assume zero metallisation thickness or infinite con- 
ductivity but with finite metallisation thickness. Thus, a 
more reliable and accurate conductor-loss model is 
needed in the design of monolithic microwave and 
millimetre-wave integrated circuits [ 11. 

To deal with the effect of finite metallisation thickness 
but with infinite conductivity, full-wave approaches such 
as the variational conformal mapping technique [2], 
frequencydependent hybrid-mode formulation [SI, 
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boundary integral equation method [4, 51 and spectral 
domain method [6] have been proposed. However, these 
methods can obtain only the effective dielectric constant. 
To discuss the conductor loss of microstrip lines by 

the conventional power-loss method [7], the signal strip 
thickness was assumed to be much larger than the skin 
depth (called the skin-depth approximation) and the cur- 
rents were evaluated from the structure with zero metal- 
lisation thickness [8-111. Recently, some full-wave 
approaches, such as the transverse resonance technique 
[12] and the extended spectral domain approach [13- 
151, were proposed to deal with the problem of finite 
strip thickness and finite conductivity. In these methods, 
the conductivity was first regarded as infinite to obtain 
the effective dielectric constant and the fields, and then 
these fields and the power-loss method were used to 
determine the loss caused by the imperfect conductor of 
the signal strip. 

Also by using the skin-depth approximation, some 
investigators [ 16-18] have treated the finite-thickness 
lossy strip as a surface impedance boundary condition by 
which the effective dielectric constant and the attenuation 
constant can be determined simultaneously. Again, in 
[19], the microstrip conductor loss was evaluated by rep- 
resenting the lossy signal strip by an equivalent imped- 
ance surface; however, this surface was characterised by a 
frequency-dependent surface impedance which was 
derived from a quasi-TEM analysis of the fields and cur- 
rents inside the imperfectly conducting strip. Recently, 
full-wave techniques without using the skin-depth 
approximation, such as the mode-matching method [ZO], 
method of lines [21], and integral equation method [22] 
were proposed to give a better characterisation of both 
effective dielectric constant and attenuation constant. 

The power-loss method and the methods based on the 
skindepth approximation are not suitable for cases in 
which the skin depth and the strip thickness are of the 
same order. Also, the above-mentioned full-wave tech- 
niques are either time consuming or lack generality due 
to some assumptions made. Therefore, an alternative 
method having fewer assumptions to obtain the propaga- 
tion constant is needed to meet the development of 
MMIC technology. 

For an analysis of the microstrip line with layer struc- 
ture in which the thickness and conductivity of the signal 
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strip and ground plane are finite, a new formulation 
modifying the conventional spectral-domain approach is 
proposed to handle the case with three-dimensional 
dependence in current distributions. In this study, all 
three components of strip current are included to 
improve the accuracy and the effects of substrate and 
ground plane are discussed. Also by this modification, the 
integration along one coordinate variable is analytically 
integrated. Hence, it is as easy as the conventional 
spectral-domain approach in which only one-dimensional 
integration has to be performed to obtain the matrix 
equation for the propagation constant. 

2 Formulation 

The cross-section of the microstrip line is shown in Fig. 
la. The conductivity and thickness of the signal strip are 
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(a) Cross section ofmicrostrip line and (b) the foyer srructure 

U and t, and those of the ground plane are ub and b. The 
width of the signal strip is w ;  and the thickness, dielectric 
constant and loss tangent of the substrate are h, e, and 
tan 6, respectively. The relation between the electric field 
E(r) and the current density J(r) within the strip conduc- 
tor R is 

(1) 
1 

G(r - r‘) . J(r’) dr’ = - J(r) 

Here, G is the dyadic Green’s function for the layer struc- 
ture (Fig. lb) in which the signal strip is replaced by the 
free space. It should be emphasised that the ground plane 
is now regarded as a lossy layer with parameters U, and 
b, therefore the effect of lossy ground may be included 
and discussed by these Green’s functions. Some detail of 
the Green functions is presented in the Appendix. 

All field quantities are assumed to be of the form 
exp [j(ot - k ,  4 3 ,  and the Fourier transformation pair is 

358 

defined as 

&k,) = [“ A(x)e-jkx” dx 
J - m  

A(x) = Im ~(k,)e’Lxx dk,  
2n - m  

By weighting both sides of eqn. 1 by any arbitrary func- 
tion w(r) and then integrated, one may obtain the integral 
equation 

J(x’, y’) dy’ dx’ - - J(x, y) dy dx = 0 (3) 1 1  
It is interesting to note that the y-dependence form of the 
spectral-domain Green functions is a linear combination 
of exp (jb0 y) and exp ( jb0 y’), where Bo is independent of 
y or y’ (see Appendix). Thus, if the bases of J(x, y) are 
properly chosen, the integral equation eqn. 3 can be 
significantly simplified. 

With the parameters (b, U*) of the ground plane 
absorbed in the Green’s functions, the only unknowns are 
the current distributions within the signal strip, which 
can be represented by 

m n  

JAx, Y) = .E aij IL2xWl(Y) 
, = o  ,=o  

r n “  

J& Y) = c c cijIL;(x)dl(Y) (4) 
i = O  j = O  

Here (m + 1) x-dependent and (n + 1) y-dependent bases 
are included in the approximation of the strip currents. It 
should be. pointed out that to obtain more accurate 
results, all three components of strip current should be 
included in the analysis. 

Because the strip thickness and conductivity are finite, 
the current distributions near the strip corner must be 
finite. In this study, Legendre polynomials are chosen as 
the x-dependent bases for the unknown strip current J, 
that is 

For simplicity, the following piecewise linear functions 
will be chosen as the y-dependent bases for the unknown 
current J: 

d ( Y )  = d 4 Y )  = dXY) = N Y )  

otherwise 

where Ai = IA and A = t /n .  The piecewise linear functions 
are chosen so that the y-dependent integrations may be 
analytically integrated: As the frequency increases, the 
skin depth 6 decreases and the current distributions 
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along the y-direction tend to the exponential function 
exp (-(1 + j)y/6), especially when t > 36, and w >> 6. Due 
to this exponential decay behaviour in currents, we alter- 
natively use the following exponential functions for the 
y-dependent bases in the higher frequency regime : 

where eqn. 7a and eqn. 76 specify the current distribu- 
tions over the lower and upper sides of the signal strip, 
respectively. Specifically, when 1 = 1 the term in eqn. 7a 
will exhibit the current distribution over the signal strip if 
the width w approaches infinity. The completeness of the 
bases in eqn. 7 can be visualised by the substitutions: 

1 + j  
k; = exp [ - y] and r, = exp [ - ~ ( t  - y)] 

The set (eqn. 7) is complete because any current distribu- 
tion can be expressed as the polynomials of I; and X. 

To derive the matrix equation for the propagation 
constant, Galerkin’s method is used, in which the bases 
for w(x, y) are the same as those for J(x, y). By applying 
the Fourier transformation and Parseval’s theorem with 
respect to x variable to eqn. 3, then analytically integ- 
rating it with respect to y, one may obtain the governing 
equations in the spectral domain 

i = O  5 j = O  ,i J:mekx)Caijzfi(kx, kz)$j(kx) 

where 

Finally from eqn. 8, one may establish the homogeneous 
matrix equation for determining the propagation con- 
stant k, = /3 - ja. 

Note that only single integration with respect to k, is 
involved in the final spectral-domain equations (eqn. 8), 
since the y-dependent integrations in eqn. 9 have been 
analytically integrated. Thus, it  can use the conventional 
technique of spectral-domain approach to find the phase 
and attenuation constants. 

3 Numerical results 

Numerical results such as effective dielectric constant 
E , ~ ~  = p2/k: (k i  = w2po E ~ ) ,  attenuation constant a, and 
longitudinal current distributions J ,  over the signal strip 
are investigated in detail. 

The convergence behaviour of the results is depicted in 
Fig. 2 in which the effective dielectric constant and 
attenuation constant at 7GHz are plotted against the 
number of x- and y-dependent bases. Here, the k, integral 
is calculated numerically from zero to 60 n/o along the 
real axis. In this comparison, the piecewise linear func- 
tions (eqn. 6) are adopted as the y-dependent bases for 
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the strip current. As shown in Fig. 2, the effective dielec- 
tric constant converges relatively quickly when compared 
to the attenuation constant. In this special case, the 

/ 5 

3 1  / -I 

1 2  3 4 5  

2 3 4 5 6 7 8 
n+1 

Convergence of effective dielectric constant cell and attenu- Fig. 2 
ation constant a with respect to the number of x- and y-dependent bases 
frequency = 1 GHz, 
1 = 3 p m ,  b = 12pm.a = 8. = 4 1  x IO’ S/m 

h = 0 I mm. 6, = 12 9. tan 6 = 3 x IO-‘, w = 20 pm, 

effective dielectric constant needs only two xdependent 
bases and three y-dependent bases whereas the attenu- 
ation constant requires four x- and y-dependent bases for 
good convergence. In comparison with the conventional 
spectral-domain approach which needs two bases for 
each component of surface current, this new method can 
solve the two-dimensional-dependence current distribu- 
tions and obtain the equations as easily as the conven- 
tional ones at the cost of ten times the CPU time in 
computation. 

A comparison between piecewise linear bases (eqn. 6) 
and exponential bases (eqn. 7) is also made. One finds 
that if the thickness of the signal strip t is greater than 
three times the skin depth 6, the number of linear bases 
needed is more than for exponential bases to obtain the 
same accuracy. Because the CPU time is directly pro- 
portional to the square of the number of y-dependent 
bases, the use of exponential bases is essential in reducing 
the computing time at higher frequency. In this study, we 
chose linear bases when t < 36 and exponential bases 
when t > 36. 

The effect of varying the strip width w is shown in Fig. 
3 in which a comparison of our attenuation constants 
with the theoretical results of Reference 15 and the meas- 
ured values of Reference 23 is also included. Good agree- 
ment between these results is observed and verifies the 
accuracy of the new approach. Note that as the strip 
width increases, the effective dielectric constant increases 
and the attenuation constant decreases. 

Fig. 4 shows the effect of increasing signal strip thick- 
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Fig. 3 Eflective dielectric constant E.,, and attenuation constant a 
versus frequency with strip width w as parameters. Also included are the 
results of References 22 and I 4  for  comparison 
E, = 12.9, tan 6 = 3 x 14-., and h = 100pm (also adopted in Figs. 4, 5, 6, and 8). 
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Fig. 4 
uersusfrequency with signal strip thickness t as parameters 
o = 70 pm 
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Effective dielectric constant E.,/ and attenuation constant a 

b = 12 pm I = ob = 4.1 x IO’ S/m 

ness t on the effective dielectric constant and attenuation 
constant. As expected, both the effective dielectric con- 
stant and attenuation constant decrease as t increases. It 
is interesting to note that the effective dielectric constant 
presents a minimum in the neighbourhood of 10GHz. 
Another point to note is the negative slope of the 
&,ff-curve at low frequency. When the conductivity U 

approaches infinity, current flows only over the strip 
surface and the effective dielectric constant increases as 
the frequency increases. However, when the conductivity 
is finite, the current at low frequency may penetrate deep 
into the whole strip region, which then introduces an 
internal inductance to increase the effective dielectric con- 
stant at low frequency [23]. 

The effect of increasing the conductivity a(= ob) is r e p  
resented in Fig. 5. Here, both the effective dielectric con- 
stant and attenuation constant decrease as U increases. 

0 1 A l  

E 0.10 
E O ]*I 

O L  
5 10 15 20 25 30 35 40 

frequency,GHz 

Fig. 5 Effectiw dielectric constant E.,/ and attenuation constant a 
uersusfrequency with conductiuities as parameters 
w = 7 O , u n  1 = 3 p  b = 1 2 p n  

I = ob = I x LO’ slm 
~ I = ob = 4.1 x 10’ s/m 

o = o b  = 6.17 x 1O’s/m 

_ _ _ _  

The effect of a lossy ground plane is shown in Fig. 6. 
Also included in this figure are the results for a perfectly 
conducting (PEC) ground plane (ub = to) for compari- 
son. As expected, the attenuation of the microstrip line 
with PEC ground plane is less than that with normal 
conductors. The influence due to the finite conductivity 
ub of the ground plane is smaller than that due to the 
conductivity U of the signal strip. The difference in the 
curves of ob = CO and ub = 4.1 x lo7 S/m (b = 3 pn) is 
only 12% for the attenuation constant and less than 0.3% 
for the effective dielectric constant. The effect of ground 
plane thickness is presented by the curves for b = 3.0 pm 
and b = 1.0 pm, the difference being less than 2% for the 
attenuation constant and less than 0.1% for the effective 
dielectric constant. 
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Fig. 7 shows the effect of varying the substrate dielec- 
tric constant E,. As expected, both the effective dielectric 
constant and attenuation constant increase as e, 
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Fig. 6 Effective dielectric constant E* and attenuation constant K 
uersusfrequency with ground plane t h i c L s s  b and conductivity ab as 
parameters 
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increases. Also, the attenuation constant is strongly 
dependent on the substrate dielectric constant. The other 
phenomenon which should be mentioned is that the 
higher the dielectric constant, the more the dispersion in 
the Eef,-curve. 

Shown in Fig. 8 is the distribution of longitudinal 
current on the signal strip with w = 20pm and 
frequency,= 7 GHz. Because the current converges 
slowly compared with the propagation constant, we use 
eight Legendre polynomials and nine piecewise linear 
functions to get a smooth current distribution. As 
expected, edge enhancement behaviour is found for the 
longitudinal current with respect to the x- and y- 
coordinates, but the edge current is finite instead of infin- 
ite. To discuss the skin-effect phenomenon due to the 
finite conductivity, let us examine the curve for x = 0 in 
Fig. 8a. From y = 0 to y = 0.625t, the magnitude changes 
from 1.0 to 0.4. This behaviour agrees well with the skin 
depth 6 which is in the order of 1 pn .  It should be noted 
that the ratio J ,  : J ,  : J ,  ranges roughly from about 

Although the transverse currents, J ,  and J , ,  are much 
smaller than the longitudinal one J , ,  their existence is 
important. Without including the transverse currents in 
the computation, the negative slope of the Eeff-curve at 
low frequency would disappear and the attenuation 
would be less accurate at higher frequencies. 

1 : 10-2 : 10-4 (io G H ~ )  to 1 : 10-1 : 10-2 (100 GH~).  
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also that as frequency increases the current on the top 
side (y = t )  decreases. 

4 Conclusions 

In this study, a modified spectral-domain approach has 
been proposed to deal with microstrip lines with a layer 
structure in which both the thickness and conductivity of 
the signal strip and ground plane are finite. The effective 
dielectric constant and attenuation constant of this lossy 
microstrip line have been discussed in detail, together 
with the longitudinal current distributions along the 
signal strip. 

The proposed approach can be applied to structures 
with superconductor signal strip and/or semiconductor 
substrates. In addition, extension to coplanar strips and 
coplanar waveguides is straightforward. 

In this work, two kinds of y-dependent bases 
(piecewise linear and exponential) are proposed for the 
unknown strip current. The disadvantage of the piecewise 
linear bases is that the number of y-dependent bases used 
is proportional to the thickness-to-skin depth ratio t/S. If 
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the value t/a is larger than three, the computation cost of 
using linear bases is expensive. To avoid the increased 
CPU time as t/S increases, exponential y-dependent bases 
should be used. 
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6 Appendix 

The s traldomain dyadic Green functions G,,, G,,, 
G,, , c, e,, , and cy, for the layer structure Fig. l b  can 
be developed by the method of References 25 and 26. 
Then, the Green functions e, and G, can be derived 
from G,, and G,, by reciprocity, and E,, can be found 
easily from G,, and Gzy. Included here is a typical one 
such as 

+ !@ ( e - Y o l ~ - r ’ l  + y FO e - M o ( ~ + ~ ’ ) ) ]  (8) 
B O  

+ BAPo + jB2 tan b2 b) 
and Sf = k: - k: - kl  ( i  = 0, 1 ,  2), k i  = w ~ E ~ ~ ~ ~  k: = 
0 2 ~ o p o  ~ , ( l  - j tan S), k: = -joub. It should be emphas- 
ised again that the ground plane is now regarded as a 
lossy layer with wavenumber k2 and thickness b therefore 
the effect of lossy ground may be included and discussed 
by these Green’s functions. 
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