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ABSTRACT needs for new concepts and methodologies to
effectively schedule the operations of modern
: factories.
h ts further developments of a . . .
This paper presents further developments o In this paper, we consider the production

production scheduling algorithm ([2]) for the class of
discrete—part, make—to—order flexible flow shops
where setup costs and times are negligible. The
scheduling problem is first formulated as a large—
scale integer programming problem and a solution
approach based on Lagrangian relaxation and
minimum cost linear network flow is then developed.
As compared to [2], this paper modifies the objective
of scheduling to meeting due dates just in time,
considers finite buffers, completes the algorithm for
finding a good feasible schedule and evaluates the
algorithm through numerical experimentations.
Numerical results indicate that our scheduling
algorithm is near—optimal and has a reasonable
computational efficiency for short term scheduling.
Algorithmic features and future research issues are
also addressed.

1INTRODUCTION

Scheduling has been well recognized as a very
important but difficult part of production control.
Although there have been numerous researches on
this topic in the literature [5], there exists quite a gap
between scheduling theory and practice. Due to the
complexity of production operations, finding the
optimal schedule efficiently is often beyond the reach
of existing theories even for many small—scale
systems. In practice, schedules are usually obtained
either by simple heuristics but with questionable
performance or through time consuming simulations.
Today, as many new manufacturing technologies
have been developed and installed [11], there are
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Science Council of Republic of China under Grants
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scheduling problem of a make—to—order flexible flow
shop, which manufactures medium—volume discrete
products. Each type of products has its- own due
date, desired quantity and associated production
process. Homogeneous machines in the shop are put
into groups and there are finite buffers among them
for intermediate part storage. The production
operations of different products may require
processing from one same machine group but there is
no revisit to it after a part is processed there except
when rework is needed. Namely, there are basically
no cycles in production flow paths. Setup times and
costs are negligible. For a given set of orders, our
objective of scheduling is to meet the due dates just
in time while satisfying constraints of (1) machine

capacity, (2) buffer capacity, (3) end product
demand and (4) precedence relationship of
manufacturing processes.

We develop an effective methodology for

scheduling such a flexible shop based on our earlier
study [2]. It consists of four parts :

(1)  the dual  problem  formulation  and
decomposition of the original problem into
subproblems according to part types by

applying Lagrangian relaxation to machine
and buffer capacity constraints;

(2) application of a minimum cost linear network
flow (MCLNF) algorithm to solve each
subproblem;

(3) application of a nondifferentiable optimization
scheme to solve the dual problem, and

(4)  development of a heuristic algorithm that finds

a near—optimal, feasible solution based on the
solution of the relaxed problem.
Numerical experimentations are conducted to
examine both the optimality and computational
efficiency of our algorithm. Results indicate that our
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algorithm is feasible and tends to obtain optimal
schedules for very small—scale problems. As problem
dimensionality increases, the gap between the dual
cost and the cost of the feasible schedule usually
stays around 10% but may grow up to 30% in cases
of low number of product types but high quantity for
each type. We find the computational efficiency of
the algorithm quite reasonable for short—term
scheduling and is most sensitive to scheduling
horizon and number of operations per type. We also
compare our algorithm with a heuristic scheduling
algorithm of a few local manufacturers [4]. All these
results demonstrate the potential of our algorithm to
be further developed into an effective short—term
scheduling tool.

The remainder of this paper is organized as
follows. The scheduling problem is formulated in
Section 2 and the development of solution algorithm
is described in Section 3. Section 4 gives results of
our numerical experimentations and addresses
features of our algorithm. Concluding remarks and
issues for further investigation are discussed in
Section 5.

2. PROBLEM FORMULATION

Consider a make—to—order flexible flow shop as
described in the previous section. We shall refer to
both products and intermediate parts as parts from
here on. We assume that
(1)  the setup times and costs can be neglected;

(2)  there are no initial in—process inventories in
the shop;

(3) the capacity for handling rework has been
deducted from each machine group; and

(4) the extra processing requirements due to

potential scraps have been added to the
original production demands.

To focus on our main concept and without loss of
generality in developing solution methodology, we
assume that all types of parts require the same
sequence of processing, i.e., the M machine groups
can be organized as a line in Figure 2.1, where buffer
m locates before machine group m and buffer M+1
represents the stock of finished parts. Both the first
and the last buffers are infinite in size. We also
assume that all the demands are released at the
beginning of the scheduling horizon.

STOCK
by my b, m, VRV VIR
Figure 2.1

Let us now define some notations for describing
such a flexible flow shop.
Notations
: total number of part types;
: part type index, i =1, «++, I;
: demand of type i parts;

: due date of type i parts;

: total number of machine groups;
: machine group index, m = 1, ++M;
: capacity of machine group m;

g

=]

e

: processing time of a type—i part on machine

g

group m;
: scheduling time horizon;

: time index, t =1, « -+, T}

: buffer index, b =1, - -+, M+1;
: capacity of buffer b;

H T

bt number of type i parts in buffer b at the

beginning of time period t;

LS number of type i parts loaded onto machine
group m for processing at time.t;

Zit : number of type i parts arriving at the stock

at period t, where Zit = uiM(t—PiM+l)'

In the flow line, a batch of type i parts loaded
onto machine group (m—1) for processing at period
t—Pi(m—I) go into buffer m at period t after
Pi (m—1) periods of processing. The first buffer of the
flow line serves as a source with initial level Di of

type i parts while the last buffer serves as a sink and
accumulates finished parts. Flows of parts are not
compressible and must satisfy the following flow
balance equations:

Flow Balance Equations

X, =Dy (2.1.a)
Kiie+1) = Sine T Yae (2.1.b)
Xim(t+1) = Ximt ™ Yime T
u, ,
l(m—l)(t——Pi(m_l))
m=2, ..., M; (2.1.¢)
Kioane+1) = o T M- )
(2.1.d)
fort=1 ., T—-landi=1, .., L
I t
The quantity ¥ ¥ u. is the total

i=1 T=t—P. +1 im7
im
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number of parts being processed by machine group m
during time period t and must not exceed the
processing capacity, i.e.,
Machine Capacity Constraints

I t

Yy X u,

o $C LYY m (22)
i=1 T=t—P, +1 "
m

Similarly, the total number of parts in buffer b
during time period t must satisfy

Buffer Capacity Constrainis

I
.Z b

i=1

where we assume that all parts take the same

amount of buffer space individually. Moreover,
X.,, and u g are nonnegative integers,

ibt
ViVm VbVt (24)
Our objective of production scheduling has two
folds : (1) to meet due dates if possible and (2) to
produce just in time. Penalty costs are incurred by
early and tardy productions[3]. We therefore
formulate the production scheduling problem as

X. ¢ Sy Vb, Vt, (2.3)

I T
(P) min ¥ X% ¢itZ

u i=1t=1 it
subject to constraints (2.1—2.4),

where the cost function wit is chosen such that
'Bi(di—t), t < di
Yy = ’
A(td.), t>d,
i i

and Bi and Ai are positive penalty coefficients on

earliness and tardiness respectively.

3. SOLUTION ALGORITHM

The production scheduling problem  (P)
formulated above is NP hard[10, Sec. 4.2]. In this
section, we describe a  near—optimal but
computationally efficient solution algorithm. We

shall elaborate on the part of finding a good feasible
solution from the dual solution and briefly describe
the steps for solving the dual problem since the latter
ones are similar to those in [2].

3.1 Lagrangian Relaxation and Decomposition

Observing that the coupling among production

flows of different part types in problem (P) is
through their competition for processing and storage
resources, therefore, we apply Lagrangian relaxation
to machine and buffer capacity constraints (2.2) and
(2.3) and form the dual problem of (P) as

(D) max DA M),

A20,m0
subject to (2.1) and (2.4),

where )\mt and Mg 2T€ the associated Lagrange
multipliers,
1 T M
A= YminLwAm—Y YA C
11, t "m

i=l u.

. t=l m=1 ™

T M
-Y Y¥nr.S, (3.1)
t=1b=1 Pt P
and
\ ”5 M t
LuAm)= Y (¥.Z2.+ YA ¥ u
b t=1 % oy Mhopp 41 W7
1im
M
+ bilﬂbtxibt)' 32)

Note that for a given set of A and 7, ie., after
relaxing machine and buffer capacity constraints, the
scheduling subproblem for type i parts is

(P—i) min Li(ui,AJr)

u.
1

subject to (2.1) and (2.4) for type i only.
All these scheduling subproblems can be solved
independently from each other.

3.2 A Network Model for Subproblems

It can be seen after a little thinking that material
flow equations (2.1) of (P—i) render themselves
naturally to a network representation. Each node of
the network corresponds to one flow balance
equation. The arcs represent either part processing
paths with uimt‘s as flows on them or parts carried

over in buffers between two time periods with Ximt s

as flows. Buffer 1 corresponds to the source node
while buffer M+1 corresponds to the sink. Machine
and buffer capacity constraints impose flow bounds
on the arcs.

Figure 3.1 illustrate the network representation of
a 2—machine, 3—buffer production line over a 5—
period time horizon, where the processing time at
machine group 1 is two units and one at machine
group 2. Furthermore, the objective function of (P—i)
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is linear in arc—flows. Thus, a subproblem (P—i) is
essentially a minimum cost linear network flow
(MCLNF) problem, which has an integer optimal
solution [7]. Interested readers may refer to [2] for
more details. We adopt here the RELAX code of
Bertsekas and Tseng [1] to solve each subproblem.

t=1 t=2 t=3 t=4 t=5
b=1
b=2
b=3
STOCK
Figure 3.1

3.3 Solving the Dual Problem

After solving all the subproblems for a given set
of Lagrange multipliers (A, @), we use the obtained
solution to update (A,m). Aware of the non—
differentiability of the dual objective function ® due
to the integrality in subproblems, we calculate the
subgradient of ® with respect to (A,7) and update
(A, ) according to the subgradient method of [8]
and [6]. We then solve the dual problem by
iteratively conducting 3.2 and 3.3. Please also refer to
(2] for more details.

3.4 Construction of a Good Feasible Schedule

The primal problem (P) is not a convex
optimization problem because of discrete decision
variables. So the schedule obtained from solving the
dual problem is generally infeasible, i.e., some of the
relaxed capacity constraints (2.2) or (2.3) may not be
satisfied. However, the dual solution does provide a
lower bound to the optimum. We now develop an
iterative, heuristic algorithm that adjusts the dual
solution to a near—optimal and feasible schedule.
Major steps of the heuristic are as follows.

Algorithm
Step 0 Initialize with the schedule obtained from

solving the dual problem.
Do for ¢ from 1 to T
Do for m from [ to M

Step 1 Check if capacity constraints of
machine m and the associated buffer are

violated at time period t.

Step 2 If so, determine, according to the
descending order of priority factors (PFs)
among different types, the type(s) of parts
that should be removed from facility
(machine or buffer) m at time period t to
eliminate the excessive production flow. The
definition of PF is given in the APPENDIX.

Step 3 Remove the excessive production flow(s)
from the production schedule. Since the
type(s) of parts to remove is identified in
Step 2, we consider again the material flow
network of the type and focus on the
upstream and downstream subnets of the arc
with the excessive flow. We pull the excessive
amount of flow out of both subnets in a way
that results in minimum production cost
change (i.e. solving a MCLNF problem for
each subnet). We then update the material
flow network according to the removal.

Step 4 Reschedule the removed production flow.
This is done by rerouting the flow in
minimum cost through the material flow
network obtained in Step 3 (a MCLNF
problem again). Update the production
schedule.

Enddo-

Enddo

Note that in all the MCLNF problems encountered in
the above feasibility adjustment algorithm, arc costs
are the same as those of the dual solution, ie., we
adjust only the primal variables but not the dual
variables.

4. NUMERICAL RESULTS

Numerical experimentations are conducted in this
section to demonstrate the feasibility, optimality and
computational efficiency of our algorithm. We first
apply the algorithm to a very simple example whose
optimal schedule can be obtained by observation. We
then test it against a set of cases designed from the
data of a local manufacturer in order to study its
algorithmic properties. All of our experimentations
are performed on a SUN/SPARC— IPC workstation.

In addition, we compare the performance of our
algorithm with that of a heuristic algorithm [4]. The
heuristic assumes infinite buffer capacity and intends
to shorten the total makespan. It breaks production
demands into work orders(WOQOs) and assign WOs one
by one to machines for processing according to the
earliest starting dates and PF values (APPENDIX)
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of WOs; the lower the PF value of a WO, the higher
its priority in getting assigned.

4.1 A Simple Example

There are 3 machine groups and 2 types of parts.
Processing requirements and system capacity data are
given in Tables 4.1 and 4.2. We set cost function
coefficients Ai=20 and Bi:1 for all part types. Note

that from the scheduling point of view, the only
difference between the two types is the due date.

In applying our algorithm to this example, we
initialize all the multipliers as zero and set initial
estimate of the optimal cost to 1000.0. The step size
adjustment parameter in the subgradient method is
1.9. The resultant(feasible) schedule is shown in a
Gantt chart (Figure 4.1) with production cost 115.0
and computation time 0.63 CPU seconds. It is easy

to see that the schedule is optimal, which is
consistent with our earlier results in [2].
Table 4.1
Part|{ Quantity| Due Date Routing
1 25 5 mi -> m2 -> m3
2 25 9 m1 -> m2 -> m3"

* The notation "mn" refers to machine group n.

4.2 Algorithmic Features

The performance of our algorithm is a function of
the length of scheduling horizon(T), number of
machine groups involved(M), number of part types(I)
and part quantity per type. We now use a set of
realistic data to create a set of 6 test scenarios and
examine the effects of the aforementioned factors on
solution optimality and computational efficiency.

The major computational loads of our algorithm
are from solving MCLNFs and subgradient iterations.
There are two known facts (a) that the
computational complexity of the RELAX code for

solving a MCLNF is O(NglogNC), where N is the
number of nodes while C is the range of arc cost
coefficients, and (b) that the convergence of
subgradient iterations slows down as the number of
Lagrange multipliers increases. We therefore project
that
(1)  as the number of part type (I) increases, the
number of subproblems increases, but not the
dimension of each subproblem or the Lagrange
multipliers; so CPU time probably increases
linearly with respect to I;

as the number of machine groups (M) and/or
scheduling horizon (T) increase, the number of
nodes in each MCLNF subproblem increases

2)

(N = M'T) and the number of Lagrange
Table 4.2 multipliers also increase with M:T; so the
Machine Group 1 2 3 computation time may increase faster than
Machine Capacity 10| 20 | 15 linearly.
Buffer Capacity {100} 20 | 15 Numerical results are listed in Table 4.3. Comparison
Proc. | Part 1 1 2 1 of scenarios S1, S2 and S6 confirms conjecture (1),
Time | Part 2 1 2 1 and S2 vs. S5 and S1 vs. S2 justify (2).
’ 2 [ 3l als |6 7] 8|09 |w
Tire] 1 NN Table 4.3
i |1.10%] 1.10| 1,5 | 2,10} 2.10[ 2.5
n2 1,100 1,10] 1,5 { 2,5 | 2,10/ 2.10] Scenariol | {M | T | CPUTIme |orimar cost| Dual Cost | Puality
[ m3 1,5 | 1.15] 1.5 [o.0] 215 | (sec) Gep
*1,q: q units of type i parts S1 |4 |7 [145/2085.68 | 595.000 [438.950 |26.23%
Figure 4.1 Schedule from our algorithm S2 107 |145}6040.00 | 1120.00 {967.998[13.57%
S3 108 [145]| 6490.08 | 1680.00 |1561.30| 7.07%
S4 108 |110] 4021.50 | 1720.00 [1566.02| 8.95%
S5 1014 [145(11861.40 | 2494.00 |1684.52 [32.46%
S6 [20|7 [145] 8622.97 { 1975.00 [1564.26 [20.80%
Time12345\6}7‘s|9110
ai | 1,10 1,10 33 1 2,10| 2,10
n2 1,10] 1,100 3 | 2,10] 2,10
N 1,10] 1,10] 112 2"01 uol In terms of the optimality measure, the duality

Figure 4.2 Schedule from the heuristic

gap, we observe that those of S1, S5 and S6 are not
so satisfactory. After a closer examination of the
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detailed schedule of S1, we find that due to the high
part quantity per type, a great amount of parts of
the same type compete for the processing resources
during the same intervals and they cannot be
differentiated in priority by our algorithm. In the
dual solution to S1, there are totally 28 periods
during which the resources constraints are violated in
high excessive quantities. Such an observation implies
that the dual solution obtained only provides a loose
lower bound. As for S5 and S6, we believe that the
dual solutions only converge to local maxima due to
large number of dual variables. Fine tuning of the
subgradient method may alleviate this problem.

5. CONCLUDING REMARKS

The scheduling algorithm we developed above
has not been fine tuned. Its current performance in
solution optimality and computational efficiency for
application to medium—sized short—term scheduling
problems such as hourly schedule over a week or
daily schedule over a season is not completely
satisfactory but acceptable. We believe that its
performance can be further improved by fine tuning
the subgradient method and carefully initializing the
Lagrange multipliers with respect to specific
application systems. Besides, we are extending the
algorithm to handle more realistic issues such as
rework, scrap, assembly and fast rescheduling.
Results will be reported in an upcoming paper.
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APPENDIX
PF = (CR — LB) - FQ
where
allowance from now to due date
CR = - - -
residual processing time
is the critical ratio,
residual processing time
LB = 0
lead time
is the load ratio, and
FQ = finished quantity

demand
is the finished quantity ratio.
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