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Abstract 

In this note, the stability robustness problem of linear 
time-invariant normal distributed parameter systems 
with multiple bounded or relative bounded directional 
perturbations is considered. The Lyapunov stability 
criterion is used to derive the system stability radius, 
i.e., the extent of perturbation within which the system 
can keep stability. 
1. Introduction 
In this paper we consider the robust stability prob- 
lem of a class of distributed parameter systems (DPS) 
[l, 21. Just like the commonly discussed finite dimen- 
sional systems, DPS also have the stability and stability 
robustness problems. However, due to the intricacy of 
underlying mathematics, it is generally more difficult to 
study these problems for DPS. Various methods, such 
as [7], that can be successfully used in finite dimen- 
sional systems seem not directly applicable in DPS. In 
the literature, many authors have managed to study 
the stability robustness problem of DPS with unstruc- 
tured bounded perturbation [3], structural perturba- 
tion [6 ] ,  and time-varying perturbation [4]. 
Here we discuss via the Lyapunov stability approach 
a case of DPS with multiple structural perturbations, 
called the directional perturbations, which are opera- 
tors each multiplied by an unknown constant. It is 
shown that with this approach the bounded and rel- 
ative bounded operators can be treated together, and 
bounds on the unknown constants can be found to en- 
sure the system stability. More specifically, the bound 
of each unknown constant can be derived separately for 
each perturbation operator. 
2. Problem Formulation 
Let 2 be a Hilbert Space with the inner product func- 
tion (., .), and A0 : D ( A 0 )  c 2 -+ 2 be a closed, linear 
unbounded operator densely defined on 2, with D ( A 0 )  
denoting the domain of Ao. Assume that A0 is the in- 
finitesimal generator of a CO-Semigroup To(t). Thus, 
the mild solution of the system: 
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can be written as z ( t )  = To(t)zo [l, 21. We say that 
A0 or To( t )  is exponentially stable if there exist M and 
w > 0 such that IITo(t)ll 5 Me-wt. 
For an exponentially stable Ao, consider the following 
system with multiple directional perturbations: 

(2) 
“ z ( t )  = (A0 + xzl k i A i ) z ( t )  
z (0 )  = zo, zo E 2 

where for each i = 1,. . . , NO, Ai is a known perturba- 
tion operator, which can be bounded or unbounded. If 
we let k = (k1,  ..., k ~ ~ )  E R N o ,  then we wish to find an 

upper bound E of 11k1)2 = 4 5 -  such that when 
Ilk112 < E ,  the system described by (2) is still exponen- 
tially stable. 
3. Main Result 

Theorem 1 Suppose A0 is  a normal operator /2] gen- 
erating the CO-semigroup To(t), then the followings are 
true: 
(1) (A0 + A:) : D ( A 0 )  c 2 -+ 2 is  the infinitesimal 
generator of T,’(t)To(t), and A0 + A: is  exponentially 
stable provided A0 is. 
(2) If A0 is exponentially stable, and Poz = 
/ , T , * ( t ) T o ( t ) z d t ,  then POZ E D ( A o ) ,  POZ E D(AG) ,  
and (A: + Ao)Poz = - z ,  where AoPo and A:Po both 
belong to  C(Z) ,  the space of bounded linear operators 
defined o n  2. 

Proof: Omitted for the sake of brevity. 
For the perturbation operators Ai’s,  we define the set 
of relative bounded perturbations of Ao. 

Definition 1 [5] Let A o : D ( A o )  c 2 -+ 2 be a n  un- 
bounded operator defined o n  2. The  set of  relative 
bounded perturbation operators with respect t o  A0 is de- 
fined as FU(Ao) = { A  : D ( A )  c 2 + 2 I D ( A 0 )  c 
D ( A ) ,  3 a , P  2 0 such that Vz E D ( A ~ ) , l l A z l l  I 
allAo~ll + PII~l l I .  

From the definition of P,(Ao), we note that C ( 2 )  C 
P,,(Ao). A rich amount of examples of relative bounded 
operators can be found in 151. It is noted that a relative 
bounded operator can be unbounded by itself. 



Theorem 2 Let A0 : D(A0) c 2 2 be an expo- 
nentially stable normal operator, and the CO -semigroup 
To(t) generated b y  A0 satisfy IITo(t)II 5 Mepwt,  where 
M , w  > 0 are constants. Assume that there are per- 
turbations Ai, i = 1, .  . . ,NO,  satisfying A: E Pu(Ag), 
and (A0 + llzl kiAi) : D(A0) c 2 + 2 generates a 
Co-semigrou,p T N ~ ( ~ ) .  Let 

7, n 
y = -1,n = 3 
Y = -2,n = 3 

- where 0 < E < 1, and E = ( ~ ~ l ( E i ) - 2 ) - ~ .  If llkllz 5 
k ,  then the perturbed system (2) is still exponentially 
stable. 

k1 k2 
0.072 0.9 0.0717 
0.138 1.8 0.1376 

Proof: Omitted for the sake of brevity. 
In this Theorem, the bound E is based on xi’s, for which 
the formula involves solving infimum over all z with 
llzll = 1. This is not always easy to do for given A0 and 
Ai’s. To provide simplified but convenient conditions, 
we give the following two Corollaries. 

Corollary 1 Under the assumption of Theorem 2. If 
an estimation of the relative bounded coeficients ai and 

such that IIAfzll 5 aillA;TzII + Pillzll exists, then a 
lower bound of xi is 

(4) 
(1 - €1 

(1 + Ro)ai + %Pi 

- 
ki 2 

where Ro = llAoPoll and 0 < 6 < 1. 

Proof: Omitted for the sake of brevity. 

Corollary 2; Under the assumption of Theorem 2. If 
A0 is further assumed to be self-adjoint, i.e., AT, = Ao, 
and a pair o,f relative bounded coeficients ai and Pi is 
known, then another lower bound of Ti is 

- (1 - E )  
k i  2 M ai + ,Pi ( 5 )  

where 0 < E .: 1 

Proof: Omitted for the sake of brevity. 
4. Example 
The fol1owin;y is an example about diffusion equations. 
Consider the following system defined on 2 = L2(0,1): 

at - - (s az + y I ) z  + k l ( % )  + ICzv(x) Jb’h(x)z(t,z)dz 
z ( t ,  0 )  = Z(t, 1) = 0 { z (0 , z )  = zo 

where h(z )  2 0 with llh(x)II = 1, ~ l w ( x ) ~ ~  = 1, and 
y < 0. Put  this system into the framework of our dis- 
cussion, we have Aoz = (& + y I ) z  with D(A0) = 
{ z  E 2 I z and % absolutely continuous, 9 E 2, 
z ( t ,  0 )  = z ( t ,  1) = 0). It is easy to verify that AT, = Ao, 

i.e., A0 is self-adjoint, and since y < 0, the semigroup 
To(t) satisfies IITo(t)ll 5 eyt.  The perturbation opera- 
tors are Alz = & z ,  with D(A1) = { z  E 2 I z abso- 
lutely continuous, E 2, z(t,O) = z ( t , l )  = 0) and 
A2z = U(.) J; h(x)z ( t ,  x)dx.. 
First we check that AI E Pu(AT,) with a1 = and 
P1 = w, where n is any positive integer larger 
than unity [5]. Also A; = -A1 and D(A; )  = D(A1). 
Therefore we have 

Thus by Corollary 2, a lower bound of El can be ob- 
tained as 

For E = 0.1, we give the resulting values of E l ,  &, and 
k in the following table: 
- 

y =  - l O , n = 4  I 0.54 I 9 I 0.539 
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