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ABSTRACT

A design-for-testability approach based on the M-
testability conditions is applied to the bit-level VLSI
systolic arrays for discrete cosine transform (DCT). Our
M-testability conditions guarantee 100% single-cell-
fault testability with a minimum number of test patterns.
A hardware overhead of no more than 6% is ient to
make the DCT arrays M-testable. The resulting number
of test patterns is only 16, regardless of the size of the
DCT array and the internal word length. Apart from the
cell-fault model, we also discuss the DCT array testing
using the module-fault model. This method detects all
possible combinational module faults pseudoexhaus-
tively. Since practical DCT arrays can be quite large,
diagnosis for the array is considered important. We pro-
pose an off-line fault diagnosis scheme which detects
and locates any faulty module by a self-comparison
approach.

Keywords: testing, design for testability, discrete
cosine transform, systolic array, iterative logic array.

L. INTRODUCTION

Discrete cosine transform (DCT) has been used in
a wide variety of digital signal processing applications
for many years. To perform DCT efficiently, high-speed
computation algorithms and/or architectures have been
investigated by many researchers in the past (see, e.g.,
[1,2,3,4]). DCT computation requires massive and
complicated data manipulations that lead to considera-
tion and implementations employing parallelism and
pipelining. To perform DCT 1n real time, such high-
speed architecture is often required. The rapid advance
in VLSI technology makes high-speed, large-scale
parallel architectures possible, with systolic arrays
among the most widely accepted because of their pipeli-
nability, regularity, locality, and scalability {3,5]. How-
ever, the side effect for integrating a very large number
of cells onto a single chip is that the complexity, cou-
pled with an increase in the ratio of logic to pins, drasti-
cally reduces the controllability and observability of the
logic on the chip. As a result, testing of such high-
complexity and high-density circuits becomes very
difficult and expensive.
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In this paper, we propose a novel approach for
designing M -testable [6] bit-level systolic DCT arrays.
An array is M -testable if it can be tested with a test set
equivalent in size to a minimal exhaustive test set of a
single cell. This approach guarantees 100% single-
cell-fault testability. Although the conditions are
stronger than those of C-testability (testability with a
constant number of patterns), its corresponding built-
in-self-test (BIST) structures require smaller hardware
overhead as compared to those based on pl-testability
[71: it has a much simpler and more regular test genera-
tor, and an equally compact res verifier with
simpler routing. The M -testability conditions are
briefly reviewed. Design procedure for M -testable DCT
arrays is then presented. We apply the technique to the
whole bit-level systolic DCT array, and the resulting
number of test patterns for the M -testable array is only
16 (regardless of size of the DCT array and the internal
word length). We show that a hardware overhead of no
more than 6% is sufficient to make them M-testable.

Apart from the cell-fault model, we also discuss
the DCT array testing using the module-fault model.
Our approach easily applies to the DCT array at the
module level due to the fact that its module function is
an x-bijection. This method detects all possible combi-
national module faults pseudoexhaustively.

Since practical DCT arrays can be quite large,
diagnosis for the array is considered important. We pro-
pose an off-line fault diagnosis scheme which detects
and locates any faulty module by a self-comparison
approach.

I1. DESIGN OF M-TESTABLE DCT ARRAYS

A cell is a combinational machine (E,IA, ).
where f:Z—A. In this paper, £={0,1} and
A={0,1}" for I,0 € N. An iterative logic array
(ILA) is an array of cells. We use the terms array and
ILA interchangeably. An ILA is unilateral when sig-
nals propagate in only one sense with respect to each
axis. It is bilateral when signals propagate in both
directions with respect to some axis. An ILA is homo-
geneous when it consists of functionally identical cells,
otherwise it is heterogeneous. Unless otherwise
specified, arrays are assumed to be unilateral and homo-



geneous. For homogeneous arrays, L=A, so
I =0 =w, which denotes the input or output word
length. We therefore may say that an array is 2" -
testable when it is M-testable. A complete or input
sequence o for a cell is an (exhaustive) input sequence
consisting of all possible input combinations for the
cell, ie, o©0=0,0,--'c,, where Vo, €L,
1€{L,2, ---,k}. A" complete output uence
5 =95, - -, is defined analogously. A minimal com-
plete sequence is a_shortest such_sequence. The x-
projection of f, f*: £ xX’ - A", is defined to be

x(i,j) =i, where f(i,j)=(,j). The y-projection
of f 1s defined analogously. An x-fault exis{s when
3(,j)€ L such that f7(1,j)=i/; where i is the
intended horizontal output but i #1i is the actual hor-
izontal output. A y-fault is defined analogously. A cell
is faulty when it has some x-fault or y-fault. We say
that is x-injective when Vj, Vi #i,
[ L) *f (g )); we say f is x-bijective if it is x-
injective and ¥* = A" (note that if A” = @ then we also
may say f is x -bijective ). Y -injective and y -bijective
are defined analogously.

We assume that the cell’s behavior is invariant
over time. That is, we are testing for permanent combi-
national faults only. Se(}uential fault testing is dis-
cussed in our other paper [8]). The fault model adopted

is the single cell fault model [9], which has been used as
the cell-level fault model by most researchers dealing
with ILA testing.

THEOREM 1 [9]: A k-dimensional ILA is M-testable if
it has a bijective cell function, where k is an arbitrary
positive integer.

Fig. I-1: A 2-dimensional +45° tessellation.

A 2-D example is shown in Fig. II-1. Let w
denote the input word length of a cell. Then M-
testability stands for 2" -testability, i.e., the whole array
can be pseudoexhaustively verified with only 2" tests
regardless of how many cells there are in the array. We
may also denote that M =2". Leto =0, 0, - g, be
a minimal complete input sequence. Then any permuta-
tion of o also is a mimimal complete input sequence. In
Fig. II-1, we see that all cells whose indices sum to the
same number, i.e., those lie in the same 45° line, receive
the same complete input sequence (/;,J;). Since the
cell function is a bijection, any fault is propagated to
some observable primary oug:t concurrently. A fault
results in an input change to the cell’s horizontal and/or
vertical neighboring cell. Bijectivity ensures that the
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change continues to ripple to some external output; the
propagating paths cannot mask each other.

We now turn to the DCT array. Let the input data
sequence be {X(n),n =0,1, --- 'N-1}, and the N-
pomt DCT of X(n) be {Y(k).k =0,1, --- ,N-1}.
Then the DCT is given by the following relation:

N-1

Y (k) =c(k) ¥ X(n)os[2n +Dkn/2N],
n=0

where

2 k=0,

k) =
c) 1, otherwise.

For ease of presentation, we neglect the scale factor

1/N. A 5-pont architecture is shown in Fig. II-2
[3], where Uy =¢’™ . It is evident that the number of
processing e{éments for N-point DCT is N + 1, and the
data sequence can be entered in ;{ts 2)atural order.
63) 6
X 62) 0
X(1) 0 0
@ DF 2 )

e +jf
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Fig, T1-2: (a) A systolic architecture for 5-point DCT and (b)
the cell function.

) We can realize each processing element with four
inner IIpl‘oduct processors (IPPs) as shown in Fig. II-3.
Fig. II-3(a) illustrates the detailed implementation of a
processing element, in which four inner product proces-
sors are contained. Each IPP performs the function as
shown in Fig. II-3(b).
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Fig. II-3: (a) The architecture of a processing element and (b)
the function of an IPP module.

Rather than using word-level cells, we may
extend the benefit of the systolic paradigm to the bit
level, using bit level cells. The IPP is actually a 2’s-
complement array multiplier [10,11]. The array
therefore can be viewed as the combination of several
array multipliers. For the purpose of testing, we con-
sider our DCT array as a large array of bit-level cells. A



(3-bit)x(3-bit) multiplier is shown in Fig. II-4(a), where
the cells marked D _are dummy cells (containing only
pipeline latches). Each cell performs the 1-bit logic
function

a
b

oy, &
]

Dc Dab
«c+cab+sab

S=s
c=s
where a and b represent multiplier and multiplicand
bits, s is the summand bit, and ¢ is the carry bit. Note
that the latches are not shown. From the truth table we
see that the cell function is not bijective.
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Fig. II-4: (a) Bit-parallel pipelined array multiplier and (b)
the truth table after function modification.
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Fig. II-5: CMOS circuits for the cell:(a)before and (b) after
function modification.

For example, (a,b,s,c) = (0,0,0,1) and (0,0,1,0)
map to the same output (0, 0, 1, 0). In order to meet the
condition of Thm. 1, we need to modify the cell function
to make it bijective. Our modification results in a circuit
that has two modes: normal operation mode and test
mode. Since no 3 different inputs map to the same out-
put in the original function, we add an extra input and
an extra output to each cell, and assign output values
such that the new cell function is bijective. In test
mode, the added wires are treated as ordinary I/O wires,
and the augmented truth-table is used. In normal opera-
tion mode, the added input wires are grounded and the
added output wires are neglected, ie., the original
truth-table is used.
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A novel algorithm for the assignment of the aug-
mented truth-table is proposed in our previous work [6].
This method makes the augmented truth-table bijective
with minimal overhead. The heuristic algorithm for our
output assignment is based on a simple goal—reflection
or complementary reflection (defined below). If a is a
feasible assi; t of values for the entries of the aug-
mented truth table, then a, (o, resp.) demotes o
confined to the input (output resp.) variable v (V' resp.),
ie., a, (o, resp.) assigns only the values for v (V/ resp.).
The assi t a confined to the upper half of the table
is denoted a'; the assignment confined to the lower half
is o'. An assignment o, for an input or output variable
v is said to be reflexive if in the augmented truth table,
the values assigned by o, are one-to-one corresponding
to those assigned by a,. It is complementarily reflexive
or simply complementary if the assigned values by «,
are one-to-one sponding to the complement of
those assigned by o,. We apply our algorithm to the
original truth table, and generate the bijective aug-
mented truth table as shown in Fig. II-4(b). The new
cell functions are:

d=a

b=b

S=s@®c Dab
E=(sc+cab+sab)r+(sc+cab+sab)z
Z=c (orf=s)

The function modification is based on our truth-
table augmentation algorithm, where o, ., o are
reflexive assignments, and o, is complementary.” The
extra output 7' can be assignef as that for s orc.

We may use, for example, the CMOS implemen-
tation as shown in Fig. II-5. Fig. II-5(a) shows the origi-
nal cell with 34 transistors. Fig. II-5(b) is the modified
cell which has 36 transistors—an overhead of 6%. This
low hardware overhead is based on our reflexive and
complementary assignment of the aungmented truth
table. Another important factor is the design of the sim-
ple XNOR circuit as shown in Fig. II-6, where only 4
transistors are required.

Vdd z

o,

olp

Fig. II-6: CMOS circuit for the XNOR gate.

If we consider our DCT array as a large array of
bit-level cells, and modify the cell function as
presented, then the whole array is M-testable according
to Thm. 1. The resulting number of test patterns is only
32, regardless of the size of the array.

There is yet another approach to make the cell
function of the array multiplier bijective, which requires
no extra input and output bits to be added to the basic
cell. The approach 1s illustrated in Fig. II-7. The
modified cell function is shown in Fig. TI-7(a). The



resulting number of test patterns is only 16, i.e., half that
of the previous method.
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Fig. I1-7: Modified cell function and the CMOS circuit.

We may use the CMOS implementation as shown in Fig.
II-7(b), where a multiplexer (marked M) is introduced.
This multiplexer is controlled by the mode selection sig-
nal that indicates whether the ILA is in test or normal
mode. If it is in test mode, the multiplexer takes input
from s, and thus ¢ =s. The cell function in test mode
clearly is bijective, so it is M-testable according to Thm.
1. Wﬁen it is in normal operation, the multiplexer takes
input from its normal path.

The highlighted line segment in Fig. II-7(b) can
not be tested in test mode. In order to increase our fault
coverage, we generate 1 and 0, respectively, to this line
and observe its output response. From the truth table in
Fig. II-7(a), this can be done by applying (0, 0, 0, 0) and
(1, 1, 1, 1), respectively, to the cell’s primary inputs.
Fig. II-8 shows the bit-level array of one processing ele-
ment for computing DCT, with word length 3. It is
assume that the coefficients can be preloaded into the
cells. The cells used in Fig. II-8(b) are M-testable cells
modified by the approach described above. In test
mode, we consider the DCT array as a large bit-level
systolic array, which is also M-testable.

II1. TESTING AT THE MODULE LEVEL

THEOREM 2: The ILA as shown in Fig. IlI-1 is M-
testable if its cell function f is x-bijective.

Proof : 1et o, =(1,,J,.J,) be a minimal complete
input sequence for a single cell. We apply o, to cell
and cell |, simultaneously. Let the resulting horizontal
output sequences of the fault free cells cell g and cell
be both /,. Since f is x—bijective and 3 = A", the
sequence G, =(1,,J,,/,) is also a minimal complete
input sequence for both cell,, and cell,,. Reiterating
this process, each cell in this array receives a minimal
complete input sequence. I, say, celly, (cell |, resp.) is
faulty, then since f is x—bijective , the‘?au]t will be pro-
pagated hotizontally through cell; (cell ;, resp.). Induc-
tively, the fault will be observable at the primary output
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IPP2 (@) IPP4 IPP2 ®) IPP4

Fig. II-8: The interconnection of a processing element in (a)
normal mode and (b) test mode.

terminals. Since o, is a minimal complete input
sequence, |o,|=2". The entire array therefore is M-
testable. U

o Y, ]
4] ool L2y of L 1s J‘
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Iy J 7y I J
Nl 2] 1 [ .

Fig. III-1: An ILA with x-bijective cell function.

A 2-point DCT array is shown in Fig. ITI-2, where
each square box stands for an IPP. We will show that
this architecture can be made M-testable by including a
few multiplexers to reroute the interconnection wires
during test mode.

CoROLLARY: An N-point DCT array can be made M -
testable by including 2V multiplexers, where M is the
length of a minimal complete input sequence for an IPP.

Proof : Since the IPP has an x-bijective cell function
(see Fig. II-3(b)), and the architecture of the DCT cir-
cuit (Fig. IlI-2) can be transformed (during test mode)
into the array of the form as shown in Fig. ITI-1 by using
multiplexers to redirect the signal wires (see Fig. III-3),
the conclusion follows directly from Thm. III-1. 3

A modified 2-point DCT array as shown in Fig.
II1-3 requires 12 IPPs and 4 multiplexers. Let w deno!
the word length, then the entire array consists of 12-2w
bit-level cells. A bit-level cell consists of 64 transistors
(including pipelined latches), so the total number of
transistor; used , in  the DCT aray is
64-122w" = 1636w". Using a 6-transistor multiplexer,
the number of added transistors is 6-4-w =24w. The



overhead is about 24w/(1636w”) = 1/64w. For a rea-
sonable word length (e.g., w = 12), the overhead is
negligible. Built-in self-test (BIST) techniques can
easily be applied to the module-level array in which the
DCT array can be tested at the system clock rate.

PE1 PE2 PE3
Fig. III-2: A 2-point DCT array.

PE1 PE2 PE3
Fig. ITI-3: The modified 2-point DCT array.

Since practical DCT arrays can be quite large,
requiring a multi-chip implementation, diagnosis for the
array is considered important. We propose an off-line
fault diagnosis scheme which detects and locates any
faulty module by a self-comparison approach. In Fig.
III-3, we divide the entire DCT array into two indepen-
dent liner array in test mode. Both of the modules at the
same column receive the same input sequence. If they
are fault free, their corresponding output sequences are

the same. Under the single module fault assumption, if

a fault exists, the output sequences of the two modules
are different. A comparator can be used to detect the
fault (see Fig. IlI4). Using this method, each process-
ing element consists of 4 IPPs and 2 comparator. It is
assumed that the XOR gates in the comparators are
self-checking, thus for practical purposes they can be
considered always fault free. They also account for
negligible area in the chip layout.

[ | =y [
A B

Fig. II1-4: A processing element with comparators.

IV. CONCLUSIONS

A design-for-testability approach based on the
M-testability conditions is applied to the bit-level VLSI
systolic arrays for discrete cosine transform (DCT),
which guarantee 100% single-cell-fault testability with
a minimum number of test patterns. A hardware over-
head of no more than 6% is sufficient to make the DCT
arrays M-testable. The resulting number of test patterns
is only 16, regardless of the size of the DCT array and
the internal word length. DCT array testing using the
module-fault model also is discussed. M-testable arrays
are proposed. Finally, an off-line fault diagnosis scheme
which detects and locates any faulty module in the DCT
array by self-comparison is presented.
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