
Abstract

In this paper, we propose an algorithm to construct the 

Ordered Binary Decision Diagram (OBDD) representing 

the cut function of a terminal-pair network. The algorithm 

recognizes isomorphic sub-problems and thus avoids re-

dundant computations. The system reliability could be ef-

ficiently computed by the OBDD. Finally, we propose an 

approach to compute the importance measures for multiple 

components by traversing the OBDD only once. The cor-

rectness and the effectiveness of our approach are demon-

strated by experiments on 30 benchmark networks. The 

experimental results on a 2-by-100 lattice network, which 

has 299 paths or 10,000 cuts, show an impressive im-

provement compared to the previous works using the sum of 

disjoint products method that have exponential complexity. 

The CPU time of our method, including the calculation of 

not only the reliability but also the importance measures, 

for a 100-stage lattice network is only about 0.24 seconds. 

Thus, this approach is very helpful for the reliability and 

sensitivity analysis of large networks. 

1. Introduction 

In recent literature [1-7], the existing algorithms for 

computing the terminal-pair reliability of a network can be 

grouped into two categories according to their approaches. 

The algorithms in the first category require enumeration of 

all the simple paths. These methods deal with a complete set 

of non-disjoint events and bring a lot of computation com-

plexity. The algorithms in the second category are based on 

decomposing a network into a disjoint event tree. Since all 

the paths of the tree are disjoint, the network reliability is the 

sum of the probabilities of these disjoint paths. However, 

identifying all the disjoint paths in a network is difficult and 
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is a well-known NP-hard problem [4]. Hence, determining 

the terminal-pair reliability of a network is thus very 

time-consuming. 

Most of previous works [1-7] focused on speeding up 

calculations by reducing the computation as much as pos-

sible. In general, these algorithms lack effective methods to 

enumerate all the simple paths and do not support efficient 

manipulation of Boolean algebra. Although these algo-

rithms have been demonstrated with a reasonable efficiency 

on medium-scale networks, they have two inherent draw-

backs. First, the sum of disjoint product forms is inefficient 

in dealing with larger Boolean functions. Second, the 

tree-based partition algorithm does not consider the merg-

ing of isomorphic sub-problems, so that redundant compu-

tations cannot be avoided. 

Since 1986, when Bryant [8] first proposed the Ordered 

Binary Decision Diagram (OBDD) representations of 

Boolean functions and proved some fundamental results on 

OBDDs, lots of researches have been developed based on 

this structure and its variations. OBDD is based on the 

Shannon expansion and can be recognized as a graph-based 

set of disjoint products. Based on this property, Kuo [9] first 

proposed a feasible OBDD-based algorithm for computing 

the terminal-pair reliability of a large network. The main 

idea, which makes the approach in [9] much more efficient 

than previous works, is that the OBDD can be automatically 

constructed by converging isomorphic sub-problems during 

traversing the network from source to sink. Therefore, the 

reliability can be quickly derived from the OBDD. The 

method in [9] focused on the path set of a terminal-pair 

network. However, in this paper we try to use the cut method 

to construct the OBDD. 

Moreover, identifying the critical components is also an 

important issue for the reliability analysis and the optimi-

zation design of network topology. In this paper, we will 

propose an OBDD-based algorithm to compute the impor-

tance measures of multiple components of a network during 

a single-pass traversal of the OBDD. The experimental re-

sults on a 2-by-100 lattice network show that our method is 

much better than previous algorithms, which have expo-
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nential complexity by using the sum of disjoint products. 

The proposed algorithm will be useful for the terminal-pair 

reliability and sensitivity analysis of large networks. 

Section 2 illustrates the preliminaries of OBDD. A 

cut-based method for constructing the OBDD of a termi-

nal-pair network is proposed in Section 3. This method 

avoids the redundant calculations on isomorphic 

sub-problems. Section 4 presents several OBDD-based 

algorithms to compute the reliability measures including the 

reliability (availability) and the Birnbaum importance 

measures of a terminal-pair network. Section 5 shows the 

experimental results on 30 benchmark networks. Section 6 

gives the conclusions. 

2. Preliminaries 

OBDD [8] is based on a disjoint decomposition of a 

Boolean function called the Shannon expansion. Given a 

Boolean function ),,( 1 nxxf , then for any },,1{ ni ;

iii xxx 1 : 

01 ii xixi fxfxf  (1) 

In order to express the Shannon decomposition concisely, 

the if-then-else (ite) format [10][11] is defined as: 

 ),,( 01 ii xxi ffxitef

The way that OBDDs are used to represent logical op-

erations is simple. Let Boolean expressions f and g be: 

),,(),,(

),,(),,(
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A logic operation between f and g can be represented by 

OBDD manipulations as: 

)(ordering)(ordering),,(
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where  represents a logic operation such as AND or OR. 

For more details on using the operations of OBDD, please 

refer to [8]. In practice, using logical operations on vari-

ables generates the OBDD. 

A useful property of OBDD is that all the paths from the 

root to the leaves are mutually disjoint. If f represents the 

system reliability expression, based on the property of the 

disjoint decomposition of OBDD, the reliability (or avail-

ability) of the system can be recursively evaluated by (1). 

}Pr{}Pr{}Pr{}Pr{}Pr{ 01 ii xixi fxfxf  (2) 

where Pr{·} means Pr{·=1} for simplification. For example, 

if Pr{xi} is the reliability Ri of component i and Ui is the 

unreliability of component i, then the system reliability R is

0101 )1(}Pr{ iiii xixixixi RRRRRURRfR  (3) 

where 1ixR and 0ixR represent }Pr{ 1ixf and }Pr{ 0ixf respec-

tively. Similarly, the unreliability of a system can be cal-

culated as: 

01}Pr{ ii xixi URUUgU  (4) 

where g is the system unreliability expression and the dual 

of f ; i.e. )1,,1,1(1),,,( 2121 nn xxxgxxxf

),,,(1 21 nxxxg , 1ixU and 0ixU represent }Pr{ 1ixg

and }Pr{ 0ixg  respectively. In this paper, we will focus on 

the unreliability expression g based on the cut-set method. 

3. Constructing OBDD Based on Cut Method 

This section presents a cut-based method to construct 

the OBDD that represents the cut function of a terminal-pair 

network. The OBDD is automatically constructed with the 

convergence of isomorphic sub-problems during traversing 

the network from the source to the target in edge reduction 

diagrams. Therefore, our approach avoids redundant cal-

culations and reduces the execution time significantly. 

Notation 

Gk a graph representing a terminal-pair network in 

the edge reduction diagram. 

Ck the cut function corresponding to Gk.

sk, tk the [source, target] of Gk.

Ek the index set of edges connected to sk in Gk.

ei an edge connected to sk in Gk, kEi .

Gk*i the sub-graph of Gk obtained by deleting all edges 

connected to sk and moving sk to the node where ei

is connected.

RN(Gk*i) eliminating the redundant nodes from Gk*i; the 

redundant node is the node which has only one 

edge connected with. 

ii xx ,  event variables, ]1,1[ ii xx represents the 

edge ei to be [functional, failed]. 

,  Boolean [AND, OR]: [conjunction, disjunction]. 

A terminal-pair network means a network with a given 

source vertex and a given target vertex. For a terminal-pair 

network, the graph Gk in the edge reduction diagram is 

composed of the union of the sub-graph Gk*i and the edge ei

connected to the source. Therefore, 

iki
Ei

k GeG
k

*  (5) 

To avoid redundant calculation, except sk and tk in Gk*i,

some redundant nodes which are connected with only one 

edge can be eliminated. For example, G1 is equivalent to 

RN(G0*1) and G8 is equivalent to RN(G5*6) in Fig. 1. Since 

only redundant nodes are eliminated, the cuts of RN(Gk*i) is 

equivalent to the cuts of the original graph Gk*i. Fig. 1 shows 

the complete edge reduction diagram of an example ter-

minal-pair network G0. Each rectangle Gk represents a 

network that is constructed from the parent graph by de-

leting all edges connected to the source node and elimi-

nating the redundant nodes. Each Gk has a corresponding 

cut function Ck that is composed of a set of cuts. Therefore, 

C0 represents the cut function of the example terminal-pair 
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network G0. We need to construct an OBDD to represent C0.

A dash line in Fig. 1 represents a cut of the network since 

it separates the terminal graph t from the root graph G0. That 

means if we cannot reach the target, then the system has 

failed. To find all of the cuts (dash lines) of G0, we found 

that there exist some relationships between the cut function 

of a graph and that of its sub-graphs. For G0, there are two 

edges, x1 and x2, connected to the source of G0. That means 

there are two branches of G0 in the edge reduction diagram. 

A branch will fail if its corresponding edge or sub-graph 

fails. Therefore, the rule to find a cut of G0 is to let both 

branches fail. Hence, the cuts of G0 are { 21 xx , 1x the 

cuts of G2, 2x the cuts of G1, the cuts of G1 the cuts of 

G2} as the dash lines in Fig. 1. Note that, for simplification, 

not all of the cuts (dash lines) of G0 are shown in Fig. 1. This 

forms the recursive relationship of the cut function, i.e. 

)( RNofcutsthe *iki
Ei

k GxC
k

 (6) 

For example, C0 is: 

)()( 22110 CxCxC  (7) 

Based on the disjoint property of OBDD, the cut func-

tion of a given terminal-pair network could be easily con-

structed by using the AND, OR manipulations of OBDD. 

Additionally, the ordering of the variables is determined by 

the breadth-first searching method [9] for a compact size of 

the OBDD. 

Moreover, instead of the conventional tree-based parti-

tions, our diagram-based reduction can avoid the redundant 

computations of isomorphic sub-graphs. Fig. 1 contains 

nine non-terminal nodes and one shared isomorphic graph 

G8. In our algorithm, we use a hash table to record the 

network topology and its corresponding cut function (i.e. 

cut-based OBDD) for each shared isomorphic graph. This 

hash table can avoid the redundant computations on iso-

morphic graphs. If we get a hit in the hash table, we do not 

need to recalculate the information of this graph. We can 

retrieve it from the hash table. A proper hash table can re-

duce the time to compare network topologies. When the 

network becomes larger and more complex, it brings a sig-

nificant growth on the number of isomorphic graphs. The 

benefit of using the hash table becomes significant. Fig. 2 

shows the cut-based OBDD of G0 derived by our method. 

The cut-based algorithm for constructing the OBDD of a 

terminal-pair network using edge reduction diagram is 

shown in Fig. 3. 

4. Reliability Analysis Using OBDD 

4.1. Reliability (Availability) 

In the previous section, the cut-based OBDD of a given 

terminal-pair network, g, is obtained. Based on the disjoint 

property of OBDD, we can efficiently derive the reliability (R) or availability (A) of a network system from the use of 
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Figure 1. Edge reduction diagram for a terminal-pair network. 
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Figure 2. The cut-based OBDD of G0 in Figure 1. 

Procedure bdd Cut_BDD_Construct(Gk)

bdd bdd_op, bdd_result;

sk = the source vertex of Gk;

if (Gk is the target) then return (bdd_one);

if ( ( bdd_result = find_hash_table(Gk) ) is a hit) then return (bdd_result);

bdd_result = bdd_one;

For each ei connected to the sk in Gk {

compute Gk*i;

eliminate redundant nodes in Gk*i; // i.e. RN(Gk*i)

bdd_op = Cut_BDD_Construct(Gk*i);

bdd_op = BDD_or( i, bdd_op);

bdd_result = BDD_and(bdd_result, bdd_op);

}

insert_hash_table(Gk, bdd_result);

free temp bdd nodes during manipulations;

return(bdd_result);

}

Figure 3. The cut-based algorithm for constructing the OBDD of a 
network. 
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the reliability or availability of each component in prob-

ability calculation, respectively. 

}Pr{1 gR  or }Pr{1 gA  (8) 

4.2. Importance Measure 

The Birnbaum importance measure of a component (say 

component k) represents the probability that a system is in a 

critical state with respect to that component, i.e. the prob-

ability that the system is initially in a good state and the 

failure of component k causes the system to fail. In [12] two 

algorithms are proposed to compute the Birnbaum impor-

tance measure using OBDD. However, the algorithms pre-

sented in [12] take more computational time and calculate 

only one component’s importance measure at a time. They 

need to be run again to obtain the importance measure of 

another component. In this section, we propose an algorithm 

to compute multiple components’ importance measures 

with only a single-pass OBDD traversal. 

The Birnbaum importance measure is defined as the 

partial derivative of the system unreliability with respect to 

the failure probability of component k:

}Pr{}Pr{
)(

)(
)( 01 kk xx

k

B
k gg

tF

tF
tI  (9) 

where F(t) is the system failure probability at time t, Fk(t) is 

the failure probability of component k at time t; Fk(t)

= }Pr{ 1kxg  where )0(1kx means component k is faulty 

(good). g is the system structure function and }Pr{ 1kxg

( }Pr{ 0kxg ) is the unreliability of the system given that 

component k has failed (not failed).

A) Two-pass traversal 

This method traverses the OBDD twice to obtain the 

importance measure for component k [12]. 

Find }Pr{ 1kxg using OBDD; i.e., find the system unre-

liability by assuming component k has failed. 

Find }Pr{ 0kxg using OBDD; i.e., find the system unre-

liability by assuming component k is not faulty. 

}Pr{}Pr{ 01 kk xx gg  gives the Birnbaum importance 

measure for component k.

B) Modified single-pass traversal 

There are two steps in a single traversal. In the first step, 

from definition (9), the importance measure depends on the 

probability of state transition of component k. Therefore, a 

disjoint path, which goes to terminal one and does not in-

clude component k in it, will not contribute to the impor-

tance measure of component k. We should delete this type of 

paths or let the probabilities of the paths be 0 when trav-

ersing the OBDD. 

The second step is similar to the procedure in Method A 

for nodes in finding }Pr{ 1kxg and }Pr{ 0kxg except for the 

node corresponding to component k. Therefore, we combine 

the two calculations at the node corresponding to compo-

nent k and compute the probability of each node (say i) in 

OBDD using the following rules: 

If node i is corresponding to component k, then 

}Pr{}Pr{}Pr{ 01 kk xxk ggg  (10) 

If node i is not corresponding to component k and or-

dering(i) > ordering(k), then

}Pr{}Pr{1}Pr{}Pr{}Pr{ 01 ii xixii gxgxg  (11) 

If node i is not corresponding to component k and or-

dering(i) < ordering(k), then also use (11) to calculate 

Pr{gi} except that let the probability of sub-tree 

Pr{g })}(Pr{ 01 ii xx g be 0 in (11) if the right (left) sub-tree 

is independent of component k. To check if the sub-tree 

of node i is independent of component k is simple. Let 

node j be the sub-node of node i. If ordering(j) > order-

ing(k) then the sub-tree is independent of component k.

Finally, when we have finished traversing the OBDD, 

we get the probability of the root, Pr{g}. Pr{g} gives the 

Birnbaum importance measure of component k.

C) Single-pass traversal for multiple components 

This method traverses the OBDD only once to get the 

importance measures of multiple components. This method 

is extended from Method B. If  is the set of components 

whose Birnbaum importance measures are to be calculated, 

Pr{g(0)} is the system unreliability, and Pr{g(k)} is the 

Birnbaum importance measure of component k, then we can 

compute the following at each node (say i):

For each node i

)}0(Pr{}Pr{1)}0(Pr{}Pr{)}0(Pr{ 01 ii xixii gxgxg  (12) 

For each k

– If node i is corresponding to component k,

)}0(Pr{)}0(Pr{)}(Pr{ 01 ii xxi ggkg  (13) 

– If node i is not corresponding to component k and or-

dering(k) > ordering(i), then let the probability of sub- 

tree )}(Pr{ 1 kg ix )})((Pr{ 0 kg ix be 0 in (14) if the right 

(left) sub-tree is independent of component k. Then cal-

culate Pr{gi(k)} using (14). 

)}(Pr{}Pr{1)}(Pr{}Pr{)}(Pr{ 01 kgxkgxkg ii xixii  (14) 

– Otherwise, do nothing since Pr{gi(k)} is equivalent to 

Pr{gi(0)}.

Finally, the probabilities, Pr{g(k)} for all k , at the 

root in the OBDD gives the Birnbaum importance measure 

of component k. Fig. 4 illustrates the OBDD-based algo-

rithm for the calculation of Birnbaum importance measures 

of multiple components by traversing the OBDD only once. 

5. Experimental Results 

Our algorithm has been implemented on a Linux Red 

Hat 7.3 operating system with Pentium-III CPU and 128 

Mbytes memory. All of our programs are written in C lan-
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guage. In the evaluation, we used 30 benchmark networks 

collected in [1-7][9] as shown in Fig. 5. All the unsuccess 

probabilities of links are 0.1. The results for terminal-pair 

network reliability match the results reported in [1-7][9]. It 

should be noted that our method does not assume the cuts or 

the minimum cutest to be given previously while the pre-

vious works [1-7] generally assumed that and finding them 

is very time-consuming. 

Table 1 illustrates the reliability and the execution time 

obtained by our method as well as the comparison of the 

SDP methods [5][7] and the OBDD-based methods. The 

comparison of results between the SDP and the OBDD size 

is not straightforward because the OBDD representation 

represents a Boolean function as a graph-based set of dis-

joint products, which differs from the SDP of two-level 

forms. However, we still compare the number of disjoint 

cuts in [5] with the number of nodes in OBDD as a reference. 

The EED-ISO [9] column is the size of OBDD nodes based 

on path-set method. To the best of our knowledge, [5] has 

the best result in minimizing the number of disjoint products 

using an SDP generating method with a random and pre-

processed list of cut-sets. For networks #17 to #19, the 

OBDD representations are more compact for large disjoint 

cut sets when the number of cuts > 200. However, compared 

with EED-ISO [9], the number of nodes using OBDD based 

on path-set method or cut-set method is of the same order. 

The computation time in [5] is CPU time in seconds on 

an FPS 500 system and does not include the cut-set gen-

eration time. The approach in [7] is an efficient method to 

computing the terminal-pair reliability, but no disjoint cuts 

were generated. The time in [7] is the CPU time in IBM 

RISC System/6000. The EED-ISO [9] based on the path-set 

method using OBDD is run on a SPARC 20 workstation 

with 128 Mbytes memory. The execution time of our algo-

rithm includes the times for the construction of OBDD and 

the reliability evaluation from the OBDD. For a large-scale 

network, especially network #19 and #30, the effectiveness 

of our algorithm becomes significant. Our cut-based ap-

proach has a great improvement over the previous works. 

Although, compared with EED-ISO [9], the performance is 

the same order as that based on the path-set method; how-

ever, we propose a new method based on the cut-set method 

using OBDD. 

Table 2 shows the Birnbaum importance measure of 

each component in network #2 and #19. When the cut-based 

OBDD of a network have been constructed, we only need to 

traverse the OBDD once to get all the Birnbaum importance 

measures. Therefore, by our method, we can efficiently 

identify the critical components of a network for the sensi-

tivity analysis. 

6. Conclusions 

This paper has two main contributions. First, we have 

proposed an algorithm to construct an OBDD representing 

the cut function of a network. The algorithm recognizes 

isomorphic sub-problems and thus avoids redundant com-

putations. Therefore, the system reliability can be efficiently 

derived based on the OBDD. Second, we have proposed an 

approach to compute the importance measures for multiple 

components by traversing the OBDD only once. This 

technique could be applied to systems whose system 

structure function is represented by an OBDD. The ex-

perimental results showed that our method is very efficient 

and can handle very large complex terminal-pair networks. 

Based on this approach, researches on sensitivity analysis, 

importance measures, failure frequency analysis or optimal 

struct imp { // Importance Measure

double g[m]; // the set of components whose  Birnbaum’s importance

} // measure is to be evaluated

main() {

static imp bim, bdd_one, bdd_zero;

for k = 0 to m

bdd_one.g[k] = 1;

bdd_zero.g[k] = 0;

next

bim = measure(root);

// bim.g[0] is the system unreliability;

// bim.g[k] is the Birnbaum’s importance measure of component k;

}

Procedure imp measure(bdd xi) { // xi is a node in Fig. 2

imp result, n_true, n_false;

if ( xi = BDD_one ) then return (bdd_one);

if ( xi = BDD_zero ) then return (bdd_zero);

if ( result = get_computed_node(xi) is a hit ) then return (result);

n_true = measure(sub_node_true(xi));

n_false = measure(sub_node_false(xi));

result.g[0] = q * n_true.g[0] + p * n_false.g[0]; // q = 1 – p

for k = 1 to m // the set of components whose  Birnbaum’s importance

if (xi is component k ) then // measure is to be evaluated

result.g[k] = n_true.g[0] – n_false.g[0];

elseif ( ordering(xi) < ordering(k) ) then

sub_true = n_true.g[k];

sub_false = n_false.g[k];

if n_true is independent of component k then sub_true = 0;

if n_false is independent of component k then sub_false = 0;

result.g[k] = q * sub_true + p * sub_false;

end if

next

insert_computed_node(xi, result);

return (result);

}

Figure 4. The OBDD-based algorithm for calculating the Birnbaum 
importance measure of multiple components. 
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Figure 5. Benchmark networks #1 to #30. 
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design issues of multi-state systems will be the focus of our 

future works. 
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Table 1. The comparison of the SDP and OBDD methods. 

–: no data,  Dcut: number of disjoint cuts,  Nodes: size of OBDD nodes. 

Lex: lexicographic ordering used to minimize Dcut,  C&L: lexicographic ordering and cardinality used to minimize Dcut. 

Time: CPU time, including the times required by Cut_BDD_Construct(), and Reliability(). 0.00 if the CPU time consumed < 0.01. The sampling period is 0.00195312 

second. 

Network # of cuts Reliability Lex 

[5] 

C&L 

[5] 

EED-ISO 

[9] 

Our 

Method 

Lex 

[5] 

CUT 

[7] 

EED-ISO 

[9] 

Our Method

   Dcut Dcut Nodes Nodes Time Time Time Time 

1 4 0.978480 5 4 10 9 0 0.00 0.00 0.00 

2 9 0.968425 16 12 15 20 0 0.00 0.00 0.00 

3 8 0.997632 13 10 26 24 0 0.00 0.00 0.00 

4 9 0.977184 21 14 22 17 0 0.00 0.00 0.00 

5 28 0.964855 82 50 50 68 0 0.00 0.00 0.00 

6 18 0.996664 25 23 39 49 0 0.00 0.00 0.00 

7 20 0.997494 62 43 51 61 0 0.00 0.00 0.00 

8 29 0.996217 115 73 66 53 0.1 0.00 0.00 0.00 

9 19 0.975116 76 42 36 31 0 0.00 0.00 0.00 

10 20 0.984068 78 43 68 50 0 0.00 0.00 0.00 

11 24 0.969112 120 38 48 67 0 0.00 0.00 0.00 

12 396 0.997186 4496 1386 548 621 0.2 0.02 0.03 0.00 

13 110 0.994076 315 150 157 153 0.1 0.01 0.00 0.00 

14 528 0.904577 11443 3854 126 131 0.3 0.02 0.00 0.00 

15 25 0.974145 157 81 40 43 0 0.00 0.00 0.00 

16 78 0.997506 321 202 407 351 0.1 0.03 0.02 0.00 

17 1300 0.985928 61651 16194 643 589 3.8 0.20 0.05 0.01 

18 214 0.987390 11198 2319 292 260 0.2 0.15 0.03 0.00 

19 7376 0.997024 1126719 281453 3591 3324 189.3 3.00 0.35 0.07 

20 105 0.987831 – – 177 179 – 0.02 0.02 0.01 

21 8742 0.975557 – – 1148 1148 – 0.55 0.43 0.16 

22 1721 0.998059 – – 1505 1681 – 0.20 0.08 0.02 

23 16 0.959624 – – 46 45 – 0.00 0.00 0.00 

24 436 0.995744 – – 250 441 – 0.03 0.03 0.01 

25 256 1.000000 – – 49785 46257 – 5.40 14.10 2.17 

26 –  0.975224 – – 4970 4970 – – 15.75 4.74 

27 34241 0.961730 – – 317 317 – – 3.65 0.98 

28 –  0.956266 – – 437 437 – – 70.73 18.16 

29 400 0.784482 – – 115 115 – – 0.02 0.01 

30 10000 0.304317 – – 595 595 – – 2.52 0.24 

Table 2. The Birnbaum importance measure of network #2 and #19. 

–: no data,  BI: Birnbaum importance. 

Network #2 Network #19 

Edge BI Edge BI Edge BI 

1 0.186567 1 0.012377 16 0.000656 

2 0.097548 2 0.002033 17 0.001322 

3 0.025377 3 0.001590 18 0.000877 

4 0.018816 4 0.001625 19 0.000425 

5 0.097548 5 0.001517 20 0.001507 

6 0.010716 6 0.001490 21 0.001495 

7 0.098277 7 0.002213 22 0.000422 

8 0.107106 8 0.000484 23 0.001524 

– – 9 0.000548 24 0.001521 

– – 10 0.000650 25 0.000513 

– – 11 0.000654 26 0.001624 

– – 12 0.000753 27 0.001592 

– – 13 0.001186 28 0.012396 

– – 14 0.012377 29 0.012400 

– – 15 0.002033 30 0.012420 
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