
Abstract

In this paper, we propose an algorithm to construct the

Ordered Binary Decision Diagram (OBDD) representing

the cut function of a terminal-pair network. The algorithm

recognizes isomorphic sub-problems and thus avoids re-

dundant computations. The system reliability could be ef-

ficiently computed by the OBDD. Finally, we propose an

approach to compute the importance measures for multiple

components by traversing the OBDD only once. The cor-

rectness and the effectiveness of our approach are demon-

strated by experiments on 30 benchmark networks. The

experimental results on a 2-by-100 lattice network, which

has 299 paths or 10,000 cuts, show an impressive im-

provement compared to the previous works using the sum of

disjoint products method that have exponential complexity.

The CPU time of our method, including the calculation of

not only the reliability but also the importance measures,

for a 100-stage lattice network is only about 0.24 seconds.

Thus, this approach is very helpful for the reliability and

sensitivity analysis of large networks.

1. Introduction

In recent literature [1-7], the existing algorithms for

computing the terminal-pair reliability of a network can be

grouped into two categories according to their approaches.

The algorithms in the first category require enumeration of

all the simple paths. These methods deal with a complete set

of non-disjoint events and bring a lot of computation com-

plexity. The algorithms in the second category are based on

decomposing a network into a disjoint event tree. Since all

the paths of the tree are disjoint, the network reliability is the

sum of the probabilities of these disjoint paths. However,

identifying all the disjoint paths in a network is difficult and

† Y.R. Chang is also with Institute of Nuclear Energy Research, Atomic

Energy Council, Taiwan.
‡ I.Y. Chen is with Department of Computer Science and Information

Engineering of National Taipei University of Technology, Taipei, Taiwan.

Acknowledgment: This research was supported by the National Sci-

ence Council, Taiwan, R.O.C. under Grant NSC 92-2623-7-002-004-NU.

is a well-known NP-hard problem [4]. Hence, determining

the terminal-pair reliability of a network is thus very

time-consuming.

Most of previous works [1-7] focused on speeding up

calculations by reducing the computation as much as pos-

sible. In general, these algorithms lack effective methods to

enumerate all the simple paths and do not support efficient

manipulation of Boolean algebra. Although these algo-

rithms have been demonstrated with a reasonable efficiency

on medium-scale networks, they have two inherent draw-

backs. First, the sum of disjoint product forms is inefficient

in dealing with larger Boolean functions. Second, the

tree-based partition algorithm does not consider the merg-

ing of isomorphic sub-problems, so that redundant compu-

tations cannot be avoided.

Since 1986, when Bryant [8] first proposed the Ordered

Binary Decision Diagram (OBDD) representations of

Boolean functions and proved some fundamental results on

OBDDs, lots of researches have been developed based on

this structure and its variations. OBDD is based on the

Shannon expansion and can be recognized as a graph-based

set of disjoint products. Based on this property, Kuo [9] first

proposed a feasible OBDD-based algorithm for computing

the terminal-pair reliability of a large network. The main

idea, which makes the approach in [9] much more efficient

than previous works, is that the OBDD can be automatically

constructed by converging isomorphic sub-problems during

traversing the network from source to sink. Therefore, the

reliability can be quickly derived from the OBDD. The

method in [9] focused on the path set of a terminal-pair

network. However, in this paper we try to use the cut method

to construct the OBDD.

Moreover, identifying the critical components is also an

important issue for the reliability analysis and the optimi-

zation design of network topology. In this paper, we will

propose an OBDD-based algorithm to compute the impor-

tance measures of multiple components of a network during

a single-pass traversal of the OBDD. The experimental re-

sults on a 2-by-100 lattice network show that our method is

much better than previous algorithms, which have expo-

A Cut-Based Algorithm for Reliability Analysis of Terminal-Pair Network

Using OBDD

Yung-Ruei Chang , Hung-Yau Lin, Ing-Yi Chen , and Sy-Yen Kuo

Department of Electrical Engineering, National Taiwan University

sykuo@cc.ee.ntu.edu.tw

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

nential complexity by using the sum of disjoint products.

The proposed algorithm will be useful for the terminal-pair

reliability and sensitivity analysis of large networks.

Section 2 illustrates the preliminaries of OBDD. A

cut-based method for constructing the OBDD of a termi-

nal-pair network is proposed in Section 3. This method

avoids the redundant calculations on isomorphic

sub-problems. Section 4 presents several OBDD-based

algorithms to compute the reliability measures including the

reliability (availability) and the Birnbaum importance

measures of a terminal-pair network. Section 5 shows the

experimental results on 30 benchmark networks. Section 6

gives the conclusions.

2. Preliminaries

OBDD [8] is based on a disjoint decomposition of a

Boolean function called the Shannon expansion. Given a

Boolean function),,(1 nxxf , then for any },,1{ ni ;

iii xxx 1 :

01 ii xixi fxfxf (1)

In order to express the Shannon decomposition concisely,

the if-then-else (ite) format [10][11] is defined as:

),,(01 ii xxi ffxitef

The way that OBDDs are used to represent logical op-

erations is simple. Let Boolean expressions f and g be:

),,(),,(

),,(),,(

0101

0101

GGxiteggxiteg

FFxiteffxitef

jxxj

ixxi

jj

ii

A logic operation between f and g can be represented by

OBDD manipulations as:

)(ordering)(ordering),,(

)(ordering)(ordering),,(

)(ordering)(ordering),,(

),,(),,(

01

01

0011

0101

jij

jii

jii

ji

xxGfGfxite

xxgFgFxite

xxGFGFxite

GGxiteFFxite

where represents a logic operation such as AND or OR.

For more details on using the operations of OBDD, please

refer to [8]. In practice, using logical operations on vari-

ables generates the OBDD.

A useful property of OBDD is that all the paths from the

root to the leaves are mutually disjoint. If f represents the

system reliability expression, based on the property of the

disjoint decomposition of OBDD, the reliability (or avail-

ability) of the system can be recursively evaluated by (1).

}Pr{}Pr{}Pr{}Pr{}Pr{ 01 ii xixi fxfxf (2)

where Pr{·} means Pr{·=1} for simplification. For example,

if Pr{xi} is the reliability Ri of component i and Ui is the

unreliability of component i, then the system reliability R is

0101)1(}Pr{ iiii xixixixi RRRRRURRfR (3)

where 1ixR and 0ixR represent }Pr{ 1ixf and }Pr{ 0ixf respec-

tively. Similarly, the unreliability of a system can be cal-

culated as:

01}Pr{ ii xixi URUUgU (4)

where g is the system unreliability expression and the dual

of f ; i.e.)1,,1,1(1),,,(2121 nn xxxgxxxf

),,,(1 21 nxxxg , 1ixU and 0ixU represent }Pr{ 1ixg

and }Pr{ 0ixg respectively. In this paper, we will focus on

the unreliability expression g based on the cut-set method.

3. Constructing OBDD Based on Cut Method

This section presents a cut-based method to construct

the OBDD that represents the cut function of a terminal-pair

network. The OBDD is automatically constructed with the

convergence of isomorphic sub-problems during traversing

the network from the source to the target in edge reduction

diagrams. Therefore, our approach avoids redundant cal-

culations and reduces the execution time significantly.

Notation

Gk a graph representing a terminal-pair network in

the edge reduction diagram.

Ck the cut function corresponding to Gk.

sk, tk the [source, target] of Gk.

Ek the index set of edges connected to sk in Gk.

ei an edge connected to sk in Gk, kEi .

Gk*i the sub-graph of Gk obtained by deleting all edges

connected to sk and moving sk to the node where ei

is connected.

RN(Gk*i) eliminating the redundant nodes from Gk*i; the

redundant node is the node which has only one

edge connected with.

ii xx , event variables,]1,1[ii xx represents the

edge ei to be [functional, failed].

, Boolean [AND, OR]: [conjunction, disjunction].

A terminal-pair network means a network with a given

source vertex and a given target vertex. For a terminal-pair

network, the graph Gk in the edge reduction diagram is

composed of the union of the sub-graph Gk*i and the edge ei

connected to the source. Therefore,

iki
Ei

k GeG
k

* (5)

To avoid redundant calculation, except sk and tk in Gk*i,

some redundant nodes which are connected with only one

edge can be eliminated. For example, G1 is equivalent to

RN(G0*1) and G8 is equivalent to RN(G5*6) in Fig. 1. Since

only redundant nodes are eliminated, the cuts of RN(Gk*i) is

equivalent to the cuts of the original graph Gk*i. Fig. 1 shows

the complete edge reduction diagram of an example ter-

minal-pair network G0. Each rectangle Gk represents a

network that is constructed from the parent graph by de-

leting all edges connected to the source node and elimi-

nating the redundant nodes. Each Gk has a corresponding

cut function Ck that is composed of a set of cuts. Therefore,

C0 represents the cut function of the example terminal-pair

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

network G0. We need to construct an OBDD to represent C0.

A dash line in Fig. 1 represents a cut of the network since

it separates the terminal graph t from the root graph G0. That

means if we cannot reach the target, then the system has

failed. To find all of the cuts (dash lines) of G0, we found

that there exist some relationships between the cut function

of a graph and that of its sub-graphs. For G0, there are two

edges, x1 and x2, connected to the source of G0. That means

there are two branches of G0 in the edge reduction diagram.

A branch will fail if its corresponding edge or sub-graph

fails. Therefore, the rule to find a cut of G0 is to let both

branches fail. Hence, the cuts of G0 are { 21 xx , 1x the

cuts of G2, 2x the cuts of G1, the cuts of G1 the cuts of

G2} as the dash lines in Fig. 1. Note that, for simplification,

not all of the cuts (dash lines) of G0 are shown in Fig. 1. This

forms the recursive relationship of the cut function, i.e.

)(RNofcutsthe *iki
Ei

k GxC
k

 (6)

For example, C0 is:

)()(22110 CxCxC (7)

Based on the disjoint property of OBDD, the cut func-

tion of a given terminal-pair network could be easily con-

structed by using the AND, OR manipulations of OBDD.

Additionally, the ordering of the variables is determined by

the breadth-first searching method [9] for a compact size of

the OBDD.

Moreover, instead of the conventional tree-based parti-

tions, our diagram-based reduction can avoid the redundant

computations of isomorphic sub-graphs. Fig. 1 contains

nine non-terminal nodes and one shared isomorphic graph

G8. In our algorithm, we use a hash table to record the

network topology and its corresponding cut function (i.e.

cut-based OBDD) for each shared isomorphic graph. This

hash table can avoid the redundant computations on iso-

morphic graphs. If we get a hit in the hash table, we do not

need to recalculate the information of this graph. We can

retrieve it from the hash table. A proper hash table can re-

duce the time to compare network topologies. When the

network becomes larger and more complex, it brings a sig-

nificant growth on the number of isomorphic graphs. The

benefit of using the hash table becomes significant. Fig. 2

shows the cut-based OBDD of G0 derived by our method.

The cut-based algorithm for constructing the OBDD of a

terminal-pair network using edge reduction diagram is

shown in Fig. 3.

4. Reliability Analysis Using OBDD

4.1. Reliability (Availability)

In the previous section, the cut-based OBDD of a given

terminal-pair network, g, is obtained. Based on the disjoint

property of OBDD, we can efficiently derive the reliability (R) or availability (A) of a network system from the use of

t

t

1x 2x

3x 4x
5x

6x 7x 8x 6x 6x 4x
8x

3x

7x8x

21 xx

243)(xxx

51 xx

543)(xxx

x3

x4

x6

x7

x8

s

t

G1

x6

x7

x8

s

t

G3 G4

x6

x7

x8s

t

x8
s

tG7 x7
s

t

G8

x3 x7s

t

G6

x5

x3

x4

x6

x7

x8s

t

G2

G5
x3

x4

x6

x7

x8
s

t

G0

s t

x1

x2

x3

x4

x5

x8

6

x7

x6

t

t

1x 2x

3x 4x
5x

6x 7x 8x 6x 6x 4x
8x

3x

7x8x

21 xx

243)(xxx

51 xx

543)(xxx

x3

x4

x6

x7

x8

s

t

G1

x6

x7

x8

s

t

G3 G4

x6

x7

x8s

t

x8
s

tG7 x7
s

t

G8

x3 x7s

t

G6

x5

x3

x4

x6

x7

x8s

t

G2

G5
x3

x4

x6

x7

x8
s

t

G0

s t

x1

x2

x3

x4

x5

x8

6

x7

x6

Figure 1. Edge reduction diagram for a terminal-pair network.

10

1x

8x

2x
2x

3x
3x 3x

4x 4x 4x 4x 4x

5x5x
5x

6x6x

7x7x

10

1x1x

8x8x

2x2x
2x2x

3x3x
3x3x 3x3x

4x4x 4x4x 4x4x 4x4x 4x4x

5x5x5x5x
5x5x

6x6x6x6x

7x7x7x7x

Figure 2. The cut-based OBDD of G0 in Figure 1.

Procedure bdd Cut_BDD_Construct(Gk)

bdd bdd_op, bdd_result;

sk = the source vertex of Gk;

if (Gk is the target) then return (bdd_one);

if ((bdd_result = find_hash_table(Gk)) is a hit) then return (bdd_result);

bdd_result = bdd_one;

For each ei connected to the sk in Gk {

compute Gk*i;

eliminate redundant nodes in Gk*i; // i.e. RN(Gk*i)

bdd_op = Cut_BDD_Construct(Gk*i);

bdd_op = BDD_or(i, bdd_op);

bdd_result = BDD_and(bdd_result, bdd_op);

}

insert_hash_table(Gk, bdd_result);

free temp bdd nodes during manipulations;

return(bdd_result);

}

Figure 3. The cut-based algorithm for constructing the OBDD of a
network.

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

the reliability or availability of each component in prob-

ability calculation, respectively.

}Pr{1 gR or }Pr{1 gA (8)

4.2. Importance Measure

The Birnbaum importance measure of a component (say

component k) represents the probability that a system is in a

critical state with respect to that component, i.e. the prob-

ability that the system is initially in a good state and the

failure of component k causes the system to fail. In [12] two

algorithms are proposed to compute the Birnbaum impor-

tance measure using OBDD. However, the algorithms pre-

sented in [12] take more computational time and calculate

only one component’s importance measure at a time. They

need to be run again to obtain the importance measure of

another component. In this section, we propose an algorithm

to compute multiple components’ importance measures

with only a single-pass OBDD traversal.

The Birnbaum importance measure is defined as the

partial derivative of the system unreliability with respect to

the failure probability of component k:

}Pr{}Pr{
)(

)(
)(01 kk xx

k

B
k gg

tF

tF
tI (9)

where F(t) is the system failure probability at time t, Fk(t) is

the failure probability of component k at time t; Fk(t)

= }Pr{ 1kxg where)0(1kx means component k is faulty

(good). g is the system structure function and }Pr{ 1kxg

(}Pr{ 0kxg) is the unreliability of the system given that

component k has failed (not failed).

A) Two-pass traversal

This method traverses the OBDD twice to obtain the

importance measure for component k [12].

Find }Pr{ 1kxg using OBDD; i.e., find the system unre-

liability by assuming component k has failed.

Find }Pr{ 0kxg using OBDD; i.e., find the system unre-

liability by assuming component k is not faulty.

}Pr{}Pr{ 01 kk xx gg gives the Birnbaum importance

measure for component k.

B) Modified single-pass traversal

There are two steps in a single traversal. In the first step,

from definition (9), the importance measure depends on the

probability of state transition of component k. Therefore, a

disjoint path, which goes to terminal one and does not in-

clude component k in it, will not contribute to the impor-

tance measure of component k. We should delete this type of

paths or let the probabilities of the paths be 0 when trav-

ersing the OBDD.

The second step is similar to the procedure in Method A

for nodes in finding }Pr{ 1kxg and }Pr{ 0kxg except for the

node corresponding to component k. Therefore, we combine

the two calculations at the node corresponding to compo-

nent k and compute the probability of each node (say i) in

OBDD using the following rules:

If node i is corresponding to component k, then

}Pr{}Pr{}Pr{ 01 kk xxk ggg (10)

If node i is not corresponding to component k and or-

dering(i) > ordering(k), then

}Pr{}Pr{1}Pr{}Pr{}Pr{ 01 ii xixii gxgxg (11)

If node i is not corresponding to component k and or-

dering(i) < ordering(k), then also use (11) to calculate

Pr{gi} except that let the probability of sub-tree

Pr{g })}(Pr{ 01 ii xx g be 0 in (11) if the right (left) sub-tree

is independent of component k. To check if the sub-tree

of node i is independent of component k is simple. Let

node j be the sub-node of node i. If ordering(j) > order-

ing(k) then the sub-tree is independent of component k.

Finally, when we have finished traversing the OBDD,

we get the probability of the root, Pr{g}. Pr{g} gives the

Birnbaum importance measure of component k.

C) Single-pass traversal for multiple components

This method traverses the OBDD only once to get the

importance measures of multiple components. This method

is extended from Method B. If is the set of components

whose Birnbaum importance measures are to be calculated,

Pr{g(0)} is the system unreliability, and Pr{g(k)} is the

Birnbaum importance measure of component k, then we can

compute the following at each node (say i):

For each node i

)}0(Pr{}Pr{1)}0(Pr{}Pr{)}0(Pr{ 01 ii xixii gxgxg (12)

For each k

– If node i is corresponding to component k,

)}0(Pr{)}0(Pr{)}(Pr{ 01 ii xxi ggkg (13)

– If node i is not corresponding to component k and or-

dering(k) > ordering(i), then let the probability of sub-

tree)}(Pr{ 1 kg ix)})((Pr{ 0 kg ix be 0 in (14) if the right

(left) sub-tree is independent of component k. Then cal-

culate Pr{gi(k)} using (14).

)}(Pr{}Pr{1)}(Pr{}Pr{)}(Pr{ 01 kgxkgxkg ii xixii (14)

– Otherwise, do nothing since Pr{gi(k)} is equivalent to

Pr{gi(0)}.

Finally, the probabilities, Pr{g(k)} for all k , at the

root in the OBDD gives the Birnbaum importance measure

of component k. Fig. 4 illustrates the OBDD-based algo-

rithm for the calculation of Birnbaum importance measures

of multiple components by traversing the OBDD only once.

5. Experimental Results

Our algorithm has been implemented on a Linux Red

Hat 7.3 operating system with Pentium-III CPU and 128

Mbytes memory. All of our programs are written in C lan-

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

guage. In the evaluation, we used 30 benchmark networks

collected in [1-7][9] as shown in Fig. 5. All the unsuccess

probabilities of links are 0.1. The results for terminal-pair

network reliability match the results reported in [1-7][9]. It

should be noted that our method does not assume the cuts or

the minimum cutest to be given previously while the pre-

vious works [1-7] generally assumed that and finding them

is very time-consuming.

Table 1 illustrates the reliability and the execution time

obtained by our method as well as the comparison of the

SDP methods [5][7] and the OBDD-based methods. The

comparison of results between the SDP and the OBDD size

is not straightforward because the OBDD representation

represents a Boolean function as a graph-based set of dis-

joint products, which differs from the SDP of two-level

forms. However, we still compare the number of disjoint

cuts in [5] with the number of nodes in OBDD as a reference.

The EED-ISO [9] column is the size of OBDD nodes based

on path-set method. To the best of our knowledge, [5] has

the best result in minimizing the number of disjoint products

using an SDP generating method with a random and pre-

processed list of cut-sets. For networks #17 to #19, the

OBDD representations are more compact for large disjoint

cut sets when the number of cuts > 200. However, compared

with EED-ISO [9], the number of nodes using OBDD based

on path-set method or cut-set method is of the same order.

The computation time in [5] is CPU time in seconds on

an FPS 500 system and does not include the cut-set gen-

eration time. The approach in [7] is an efficient method to

computing the terminal-pair reliability, but no disjoint cuts

were generated. The time in [7] is the CPU time in IBM

RISC System/6000. The EED-ISO [9] based on the path-set

method using OBDD is run on a SPARC 20 workstation

with 128 Mbytes memory. The execution time of our algo-

rithm includes the times for the construction of OBDD and

the reliability evaluation from the OBDD. For a large-scale

network, especially network #19 and #30, the effectiveness

of our algorithm becomes significant. Our cut-based ap-

proach has a great improvement over the previous works.

Although, compared with EED-ISO [9], the performance is

the same order as that based on the path-set method; how-

ever, we propose a new method based on the cut-set method

using OBDD.

Table 2 shows the Birnbaum importance measure of

each component in network #2 and #19. When the cut-based

OBDD of a network have been constructed, we only need to

traverse the OBDD once to get all the Birnbaum importance

measures. Therefore, by our method, we can efficiently

identify the critical components of a network for the sensi-

tivity analysis.

6. Conclusions

This paper has two main contributions. First, we have

proposed an algorithm to construct an OBDD representing

the cut function of a network. The algorithm recognizes

isomorphic sub-problems and thus avoids redundant com-

putations. Therefore, the system reliability can be efficiently

derived based on the OBDD. Second, we have proposed an

approach to compute the importance measures for multiple

components by traversing the OBDD only once. This

technique could be applied to systems whose system

structure function is represented by an OBDD. The ex-

perimental results showed that our method is very efficient

and can handle very large complex terminal-pair networks.

Based on this approach, researches on sensitivity analysis,

importance measures, failure frequency analysis or optimal

struct imp { // Importance Measure

double g[m]; // the set of components whose Birnbaum’s importance

} // measure is to be evaluated

main() {

static imp bim, bdd_one, bdd_zero;

for k = 0 to m

bdd_one.g[k] = 1;

bdd_zero.g[k] = 0;

next

bim = measure(root);

// bim.g[0] is the system unreliability;

// bim.g[k] is the Birnbaum’s importance measure of component k;

}

Procedure imp measure(bdd xi) { // xi is a node in Fig. 2

imp result, n_true, n_false;

if (xi = BDD_one) then return (bdd_one);

if (xi = BDD_zero) then return (bdd_zero);

if (result = get_computed_node(xi) is a hit) then return (result);

n_true = measure(sub_node_true(xi));

n_false = measure(sub_node_false(xi));

result.g[0] = q * n_true.g[0] + p * n_false.g[0]; // q = 1 – p

for k = 1 to m // the set of components whose Birnbaum’s importance

if (xi is component k) then // measure is to be evaluated

result.g[k] = n_true.g[0] – n_false.g[0];

elseif (ordering(xi) < ordering(k)) then

sub_true = n_true.g[k];

sub_false = n_false.g[k];

if n_true is independent of component k then sub_true = 0;

if n_false is independent of component k then sub_false = 0;

result.g[k] = q * sub_true + p * sub_false;

end if

next

insert_computed_node(xi, result);

return (result);

}

Figure 4. The OBDD-based algorithm for calculating the Birnbaum
importance measure of multiple components.

s ts t s t s t s t

s t s t

s

t

s

t

s t
s t

s t

s t
s t

s

t

s

t

s t

t

s

s

t

t

s

t

s
163

t

s
123

t

s

202

t

s

1002

s

t

ts
s t

A complete

network with

10 nodes

(1)

(6)

(11)

(16)

(21)

(26)

(2)

(7)

(12)

(17)

(22)

(27)

(3)

(8)

(13)

(18)

(23)

(28)

(4)

(9)

(14)

(19)

(24)

(29)

(5)

(10)

(15)

(20)

(25)

(30)

s t

s t

s ts ts ts t s ts t s ts t s ts t

s ts t s ts t

s

t

s

t

s

t

s

t

s ts t
s ts t

s ts t

s ts t
s ts t

s

t

s

t

s

t

s

t

s ts t

t

s

t

s

s

t

s

t

t

s

t

s

t

s
163

t

s
163

t

s
123

t

s
123

t

s

202

t

s

202

t

s

1002

t

s

1002

s

t

s

t

ts ts
s ts t

A complete

network with

10 nodes

(1)

(6)

(11)

(16)

(21)

(26)

(2)

(7)

(12)

(17)

(22)

(27)

(3)

(8)

(13)

(18)

(23)

(28)

(4)

(9)

(14)

(19)

(24)

(29)

(5)

(10)

(15)

(20)

(25)

(30)

(1)

(6)

(11)

(16)

(21)

(26)

(2)

(7)

(12)

(17)

(22)

(27)

(3)

(8)

(13)

(18)

(23)

(28)

(4)

(9)

(14)

(19)

(24)

(29)

(5)

(10)

(15)

(20)

(25)

(30)

s ts t

s ts t

Figure 5. Benchmark networks #1 to #30.

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

design issues of multi-state systems will be the focus of our

future works.

References

[1] S. Rai and K.K. Aggarwal, “An efficient method for reli-

ability evaluation of a general network”, IEEE Trans. Reli-

ability, vol. R-27, pp. 206-211, Aug. 1978.

[2] J.A. Abraham, “An improved algorithm for network reli-

ability”, IEEE Trans. Reliability, vol. R-28, pp. 58-61, 1979.

[3] S. Rai, A. Kumar, and E.V. Prasad, “Computer terminal re-

liability of computer network”, Reliability Engineering, vol.

16, pp. 109-119, Jan. 1986.

[4] S. Harri and C.S. Raghavendra, “SYREL: A symbol reli-

ability algorithm based on path and cut-set methods”, IEEE

Trans. Computers, vol. C-36, pp.1224-1232, Oct. 1987.

[5] S. Soh and S.Rai, “Experimental results on preprocessing of

path/cut term in the sum of disjoint products technique”,

IEEE Trans. Reliability, vol. 42, pp. 24-33, Mar. 1993.

[6] S. Soh and S. Rai, “CAREL: Computer Aided RELiability

evaluator for distributed computing networks”, IEEE Trans.

Parallel and Distributed Systems, vol. 2, pp. 199-213, Apr.

1991.

[7] Y.G. Chen and M.C. Yuang, “A cut-based method for ter-

minal-pair reliability”, IEEE Trans. Reliability, vol. 45, pp.

413-41, Sept. 1996.

[8] R.E. Bryant, “Graph-based algorithms for Boolean function

manipulation”, IEEE Trans. Computers, vol. C-35, pp.

677-691, Aug. 1986.

[9] S.Y. Kuo, S.K. Lu, and F.M. Yeh, “Determining Termi-

nal-Pair Reliability Based on Edge Expansion Diagrams

Using OBDD”, IEEE Trans. Reliability, vol. 48, no. 3, pp.

234-246, Sept. 1999.

[10] A. Rauzy, “New algorithms for fault tree analysis”, Reli-

ability Engineering and System Safety, vol. 40, pp. 203-211,

1993.

[11] R.M. Sinnamon and J.D. Andrews, “Improved efficiency in

qualitative fault tree analysis”, Quality and Reliability En-

gineering Int’l., vol. 13, pp. 293-298, 1997.

[12] R.M. Sinnamon and J.D. Andrews, “Fault Tree Analysis and

Binary Decision Diagrams,” Proc. Ann. Reliability and

Maintainability Symp., (RAMS ’96), pp.215-222, Jan. 1996.

Table 1. The comparison of the SDP and OBDD methods.

–: no data, Dcut: number of disjoint cuts, Nodes: size of OBDD nodes.

Lex: lexicographic ordering used to minimize Dcut, C&L: lexicographic ordering and cardinality used to minimize Dcut.

Time: CPU time, including the times required by Cut_BDD_Construct(), and Reliability(). 0.00 if the CPU time consumed < 0.01. The sampling period is 0.00195312

second.

Network # of cuts Reliability Lex

[5]

C&L

[5]

EED-ISO

[9]

Our

Method

Lex

[5]

CUT

[7]

EED-ISO

[9]

Our Method

 Dcut Dcut Nodes Nodes Time Time Time Time

1 4 0.978480 5 4 10 9 0 0.00 0.00 0.00

2 9 0.968425 16 12 15 20 0 0.00 0.00 0.00

3 8 0.997632 13 10 26 24 0 0.00 0.00 0.00

4 9 0.977184 21 14 22 17 0 0.00 0.00 0.00

5 28 0.964855 82 50 50 68 0 0.00 0.00 0.00

6 18 0.996664 25 23 39 49 0 0.00 0.00 0.00

7 20 0.997494 62 43 51 61 0 0.00 0.00 0.00

8 29 0.996217 115 73 66 53 0.1 0.00 0.00 0.00

9 19 0.975116 76 42 36 31 0 0.00 0.00 0.00

10 20 0.984068 78 43 68 50 0 0.00 0.00 0.00

11 24 0.969112 120 38 48 67 0 0.00 0.00 0.00

12 396 0.997186 4496 1386 548 621 0.2 0.02 0.03 0.00

13 110 0.994076 315 150 157 153 0.1 0.01 0.00 0.00

14 528 0.904577 11443 3854 126 131 0.3 0.02 0.00 0.00

15 25 0.974145 157 81 40 43 0 0.00 0.00 0.00

16 78 0.997506 321 202 407 351 0.1 0.03 0.02 0.00

17 1300 0.985928 61651 16194 643 589 3.8 0.20 0.05 0.01

18 214 0.987390 11198 2319 292 260 0.2 0.15 0.03 0.00

19 7376 0.997024 1126719 281453 3591 3324 189.3 3.00 0.35 0.07

20 105 0.987831 – – 177 179 – 0.02 0.02 0.01

21 8742 0.975557 – – 1148 1148 – 0.55 0.43 0.16

22 1721 0.998059 – – 1505 1681 – 0.20 0.08 0.02

23 16 0.959624 – – 46 45 – 0.00 0.00 0.00

24 436 0.995744 – – 250 441 – 0.03 0.03 0.01

25 256 1.000000 – – 49785 46257 – 5.40 14.10 2.17

26 – 0.975224 – – 4970 4970 – – 15.75 4.74

27 34241 0.961730 – – 317 317 – – 3.65 0.98

28 – 0.956266 – – 437 437 – – 70.73 18.16

29 400 0.784482 – – 115 115 – – 0.02 0.01

30 10000 0.304317 – – 595 595 – – 2.52 0.24

Table 2. The Birnbaum importance measure of network #2 and #19.

–: no data, BI: Birnbaum importance.

Network #2 Network #19

Edge BI Edge BI Edge BI

1 0.186567 1 0.012377 16 0.000656

2 0.097548 2 0.002033 17 0.001322

3 0.025377 3 0.001590 18 0.000877

4 0.018816 4 0.001625 19 0.000425

5 0.097548 5 0.001517 20 0.001507

6 0.010716 6 0.001490 21 0.001495

7 0.098277 7 0.002213 22 0.000422

8 0.107106 8 0.000484 23 0.001524

– – 9 0.000548 24 0.001521

– – 10 0.000650 25 0.000513

– – 11 0.000654 26 0.001624

– – 12 0.000753 27 0.001592

– – 13 0.001186 28 0.012396

– – 14 0.012377 29 0.012400

– – 15 0.002033 30 0.012420

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

