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Upward-closed sets of integer vectors
enjoy the merit of having a finite number of
minimal elements, which is behind the
decidability of a number of Petri net related
problems. In general, however, such a finite
set of minimal elements may not be
effectively computable. In here, we develop

a unified strategy for computing the sizes of
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the  minimal elements of certain
upward-closed sets associated with Petri
nets.

Keyword: Petri Nets » Upward-Closed

Sets > Minimal Elements.
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Evidence has suggested that upward
-closed sets play a key role in a number
of decidability results in automated
verification of infinite state systems. In
the analysis of Petri nets, the notion of
upward-closed sets is closely related to
the so-called property of monotonicity
which serves as the foundation for many
decision procedures for Petri net
problems. What the monotonicity
property says is that if a sequence o of
transitions of a Petri net is executable
from a marking p € N¥, then the same
sequence is legitimate at any marking
greater than or equal to p. That is, all
the markings enabling o form an
upward-closed set.

In spite of the fact that the set of all
the minimal elements of an upward-
closed set is always finite, such a set may
not be effectively computable in general.
There are, however, certain interesting
upward-closed sets for which their

minimal  elements are effectively



computable. A notable example is the set
of initial markings of a Petri net from
which a designated final marking is
coverable. More recent work
demonstrated decidability to compute,
from a given upward-closed set of final
states, the set of states that are backward
reachable from the final states.

Given the importance of upward-
closed sets, it is of interest theoretically
and practically to be able to characterize
the class of upward-closed sets for which
their minimal elements are computable.
Along this line of research, Valk and
presented a sufficient and
necessary condition under which the set

Jantzen

of minimal elements of an upward-
closed set is guaranteed to be effectively
computable. Supposed U is an upward
-closed set over N and w is a
symbol representing something being
arbitrarily large. Valk and Jantzen hown
that the set of minimal elements of U
is effectively computable iff the question
‘reg(v)NU = @?’ is decidable for every
ve (NU{w})®, where reg(v)={x|xe
N¥, x<v} . However, there is no
complexity bounds for the sizes of the
minimal elements in the result of Valk
and Jantezen. As knowing the size of
minimal elements might turn out to be
handy in many cases, the following
question arises naturally. If more is
known about the query ‘reg(v)NU =&
? *, could the size of the minimal
fact,
answering the question in the affirmative

elements be measured? In

is the main contribution of our work.

It is well known that
upward-closed set over N* has a finite
number of minimal elements. However,
such a finite set may not be effectively
computable in general. In an article by
Valk and Jantzen, the following result
was proven which suggests a sufficient
and necessary condition under which the
set of minimal elements of an
upward-closed set is effectively
computable:

Theorem 1. For each upward-closed set

K(CN*) , min(K) is effectively

every

computable iff for every ve N, the

problem “reg(v)NU = @?’ is decidable.
(Recall thatreg(v) ={x | x € N, x <v})
In what follows, we show that for

k

w !

every ve N’ , should we be able to

compute the size of a witness for
reg(v)NU =@ (if one exists), then an

upper bound can be placed on the size of
all minimal elements.
Theorem 2. Given an upward-closed set

U(CNY), if for every veN¥, a witness

we N“ for every ‘reg(v)nU =g’ (if
one exists) can be computed with

(i) [W|<b , for some beN when

(i) W< f(v]) when v=(w,...w),

for some monotone function f, then
||min(U)||§ <D (0).

We examine some upward-closed



sets defined and discussed in Valk and
Jantezen. Given a PN=(P,T, ), a vector

we N¥ is said to be

() T—blocked , for TCT if

Yu'€eR(Pp), ~(3teT,u'—). For

each case when T =T, i 1s said to be

a total deadlock.

(ii) dead if F(P, ) is finite.
(iii)bounded if R(P,u) is
otherwise, it is called unbounded.

finite;

(iv)f—continual, for ng, if there

exists a oc€T? , pu—2— and

T ClIn(o).

For a PN (P,u,) ., consider the
following four sets defined in Valk and
Jantezen.

(i) NOTBLOCKED(T) ={ueN"|u is

not T — blocked}.

(i) NOTDEAD ={uecN*|n is not
dead }.

(iii) UNBOUNDED ={ueN*|u is
unbounded }.

(iv) CONTINUAL(T)={ueN*|n is

A

T —continual}.

It has been shown in Valk and
Jantezen that for each of the above four
upward-closed sets, the ‘reg(v) NK = &
?” query of Theorem 1 is decidable; as a
consequence, the set of minimal
elements is effectively computable. We

now show how to use Theorem 2 to
estimate the bound of the minimal
elements for each of the four sets. To this
end, we show that if “‘reg(v)NK = @?’,
where K is any of the above four
upward—closed sets, then there is a
witness whose max-value is bounded by

2d><k><logk

, where d is constant, n is the
maximum number of tokens that can be

added to or subtracted from a place in
the k-dimensional PN and n is
independent of v.

Theorem 3. Given a k-dimensional PN

(P, T,p) and a f CT ,

Hmin(NOTBLOCKED(‘I:))H , [min(UN

BOUNDED)| , [min(NOTDEAD)|

2d><k><logk

Hmin(CONTINUAL(I:)H < n ,

where n= H‘FH and d is a constant.

Now we consider a problem that
arises  frequently in  automated
verification. Given a system S with
initial state g, and a designated set of
states Q, it is often of interest and
importance to ask whether some state in
Q can be reached from g, which
constitutes a question related to the
analysis of a safety property. Instead of
using the forward-reachability analysis,
an equally useful approach is to use the
so-called backward-reachability analysis.
In the latter, we compute the set
pre (S,Q) which consists of all the
states from which some state in Q is
reachable, and then decide whether



g€ pre’(S,Q). In general, pre’(S,Q)
may not be computable for infinite state
systems.

For PNs, we define the
backward-reachability (BR, for short)
problem as follows:

-lnput : A PN P and a set U of
markings

-Output: The set pre” (P,U) ={u|R(P,
u)ynu = o}

In words, the problem is to find the set of
initial markings from which a marking in
U can be reached. Now suppose U is
upward-closed, then {u|R(P,u)nU =
&} is upward-closed as well, and is, in

fact, equivalent to Uvemin(u){'ulzl’u'e

R(P,u), ' >V}. The latter is basically
asking about coverability issues of PNs.
Hence, the max-value of the minimal
elements can be derived along the same
line as that for the set NOTBLOCKED.
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We have developed a unified
strategy for computing the sizes of the
minimal elements of certain upward-
closed sets associated with Petri nets.
Our approach can be regarded as a
refinement of Valk and Jantezen in the
sense that complexity bounds become
available (as opposed to merely
decidability as was the case in Valk and
Jantezen), as long as the size of a
witness for a key query is known.

Several upward-closed sets that arise in

the theory of Petri nets as well as in

backward-reachability ~ analysis in

automated verification have been

derived in this project. It would be

interesting to seek additional
applications of our technique.
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