Compiler Techniques to Extract Parallelism within a Nested Loop

Chien-Min Wang and Sheng-De Wang
Department of Electrical Engineering
National Taiwan University
Taipei 10764, Taiwan

Abstract

By analyzing the dependences between instances, we
propose a new compiler technique, called cycle breaking,
to parallelize nested loops. For a single dependence cycle,
it extracts more parallelism than two similar techniques.
Several versions of cycle breaking are presented to extract
parallelism within a nested loop by linearizing its multi-
dimensional iteration space. It is observed that the order in
which loops are linearized can dramatically affect the
parallelism extracted by cycle breaking. Two loop reorder-
ing transformations are investigated. Methods to find the
optimal linearization order of loops are proposed. These
techniques can enhance the parallelism of a nested loop.

1. Introduction

In this paper, we discuss compiler techniques to extract
parallelism within a nested loop. A nested loop is defined
as a list of n statements enclosed by m DO loops. The
degree of a statement is the number of distinct DO loops
enclosing it. Let S; denote the ith statement and [; denote the
index of the jth loop. We use Sgly, I, ... , I}) to denote
statement S; of degree k. Each execution of a statement is an
instance of that statement. Unless explicitly specified, loops
are assumed to be normalized. Let N; be the loop bound of
the jth loop. Then, S{/y, I, .. Ik) has T j=1N] different
instances. Each instance can be uniquely represented by
Siiy, i, ... » ig), where i} is the value of loop index /;.

To extract parallelism within a nested loop, compilers
must know what can be executed in parallel. We use a data
dependence graph [2], [4] to represent precedence relations
between instances. S;is dependent on §; if there exists a data
dependence betweenS iy e »ig) and Sy, .. . ji) such that
Sij1s --- » Ji) can not start execution before SHits <o s iR
finished execution. S;(iy, ... , i) is called the dependence
source and S{jy, ... ji) is called the dependence sink. We
use §; 6 ;10 denote the dependence of S; on S;.

For each data dependence S; 8 S; 1nvolv1ng instances
Siqs ... ipand Sjys ... , ji), the rth dzstance o, is defined

0730/3157/91/0000/0024/$01.00 © 1991 |EEE

to be ¢, = j, — i,. The k-tuple (¢y, ... , ¢;) is called the
dependence distance vector. Since dependences may exist
between several different pairs of instances, the distance
vector between two statements may not be unique. The one
with the minimum distance should be used as the distance
vector. Furthermore, it is assumed that each distance vector
is known at compile-time. The true distance or simply
distance ® is defined as follows.

k
®=3 (o TInn)
r=1" m=r+l

The true distance gives the total number of iterations
between the source and the sink of a dependence. A data
dependence graph is a directed graph G(V, E) with a set of
nodes V = {5y, S, ... , S} corresponding to the statements
in a program, and a set of arcs E = {¢;; = (S;, S) 15;, S; € V}
representing data dependences between statements

The rest of this paper is organized as follows. Section 2
discusses cycle breaking for a single dependence cycle.
Section 3 addresses the effect of loop reordering. Section 4
discusses cycle breaking for general dependence graphs.
Finally, conclusions are given in section 5.

@

2. Cycle breaking

Based on the data dependence graph, several different
transformations were proposed to restructure a serial pro-
gram into parallel form. In this section, we propose a new
transformation called cycle breaking. The serial program is
assumed to have n statements involved in a dependence
cycle such that §; 8, S, 8, ... S, 8, S1. In the restructured
program, parallelism is explicitly specified. We shall use
DOALL loops to represent those loops whose iterations can
be executed in parallel and DOSER loops to represent those
loops whose iterations must be executed serially.

2.1. Simple loops
First, consider the simple loop in Fig. 1(a), which was

given as an example in [6). The dependences between
instances of this loop are shown in Fig. 1(b). The instances

in Fig. 1(b) are partitioned into disjoint sets of instances
called groups. Note that instances in the same group can be
executed concurrently without violating any dependence
constraint. Furthermore, there exists an order of all groups
such that the instances of a group are free of dependence
sinks when all groups that precede this group have been
executed. Groups can be executed serially in this order
without violating any dependence constraint. Such an ex-
ecution order is called a valid execution order. Accordingly,
the original loop can be restructured into the nested loop in
Fig. 1(c) such that 5 instances can be executed in parallel
without violating the semantics of the original loop.

This example can be generalized to any simple loop. In
general, a simple loop can be represented by Fig. 2(a).
Recall that statements are involved in the dependence cycle
$; 8, 8,8, ... 5,8, S;. Let ¢' be the distance of the
dependence §;. The distance of the dependence cycle,
denoted by B, is given by the following equation.

n

p=Y ¢
i=1

If we traverse from an instance of S; along dependence
arcs until another instance of S; is reached, we obtain a cycle
starting and ending at instances of ;. Since there is only one
dependence cycle, the distance of the path from the starting
instance to the ending instance must be B. In other words,
there may exist a dependence for more than p consecutive
instances of a statement. On the other hand, B consecutive
instances of a statement can be executed concurrently
without violating any dependence constraint. To extract as
more parallelism as possible, cycle breaking will partition
instances into groups containing B consecutive instances.
The group j of statement S;, denoted by V/, is the set of
instances S;((j—1)B+H;+1) through S;(jB+1;), where p; is the
offset of S; and is given by the following equation.

i-1
;=0 and ;=Y ¢ for i> 1
=1

In other words, Vi={S;(k) | G=DB+u+1 <k < jBeis; .
For cycle breaking, the following lemmas hold.

Lemma 1: For any group VY, the instances in Vv can be
executed in parallel and in any order without violating any
dependence constraint.)

Lemma 2: For any group V/, the instances in V/ are free
of dependence sinks if groups are executed as follows.

1. Group qu is executed first.)
2. If i # n, V., is executed immediately after V7.
3. v{*!is executed immediately after V.

Proof: First, consider group V. By definition, gro%p V10
contains no instance. Hence, this lemma is true for V.

Then, consider group V., ;, i # n. Suppose that S;,;(k) is
an instance of group V1. If S;, (k) is a dependence sink,
the corresponding dependence source must be Si(k-¢"). By

@

25

definition, S;(k—¢") is an instance of V/. The instances in
V., are free of dependence sinks if v/ has been executed.
Therefore, this lemma is true for V%, wheni # n.

Next, consider group V{*'. Suppose that $(k) is an
instance of group V{”. If Sy(k) is a dependence sink, the
corresponding dependence source must be S,(k—¢™). By
definition, S,(k—¢") is an instance of V. The instances in
v{*! are free of dependence sinks if V) has been executed.
Therefore, this lemma is true for V{*",

Since any group must be one of the above three cases,
this lemma is true for any group. |

Lemma 1 indicates that instances of a group can be
executed in parallel while Lemma 2 ensures that there exists
a valid execution order of groups. Accordingly, any simple
loop in Fig. 2(a) can be restructured into the nested loop in
Fig. 2(b) without violating any dependence constraint.

2.2. Compare with other techniques

In its purpose, cycle breaking is similar to partial loop
partition [5) and cycle shrinking [6]. We briefly outline
these two transformations and then compare cycle breaking
with these two transformations. Consider the simple loop in
Fig. 2(a). Partition transforms this loop into the nested loop
in Fig. 2(c), where g = gcd(0', 6%, &"). It tries to group
together all iterations of a DO loop that form a dependence
chain. Each such group is executed serially while different
groups can be executed in parallel.

On the other hand, cycle breaking will transform the
simple 100[.l> into the nested loop shown in Fig. 2(d), where
A = min(@', ¢% ... , ¢"). It groups together independent
iterations and executes them in parallel. Since ?1, ... 0" are
positive integers, min(®', o7, ... , ") 2 ged(¢", ¢°, ")
or A > g. Therefore, the parallelism extracted by cycle
shrinking is always greater than or equal to the parallelism
extracted by partition. In addition, all » statements inside
each iteration can also be executed in parallel. This gives
another speedup factor of n.

In contrast to partial loop partition and cycle shrinking,
cycle breaking deals with instances rather than iterations. It
groups together independent instances of a statement and
executes them in parallel. The simple loop in Fig. 2(a) will
be transformed into the nested loop in Fig. 2(b), where B is
given in Eq. (2). Clearly, we have the following lemma.

Lemma 3:1£¢', %, ..., ¢" are all positive integers, then

n
B=Y 6 2 nxmin@" ¢%....0" =nxA.
i=1
Lemma 3 indicates that the parallelism extracted by
cycle breaking is greater than or equal to the parallelism
extracted by cycle shrinking. Hence, for a single depend-
ence cycle, cycle breaking is always superior to partition
and cycle shrinking.

2.3. Nested loops

Next, consider applying cycle breaking to nested loops.
Let <4}, ¢5, ... » &> and ®; be the distance vector and the
true distance of dependence §;. For nested loops, there are
three versions of cycle breaking as discussed below.

The first version is simple cycle breaking. In this version,
the dependence cycle is considered separately for each
individual loop in the nested loop. For an individual loop at
level k, only the kth elements of distance vectors are con-
sidered. We have m different cycles, one for each individual
loop. For each individual loop, cycle breaking is applied
separately as in the simple loop case. Let B; be the distance
of the ith cycle. It is given by the following equation.

Bi=3, o}
1

If the distance of the ith cycle is less than or equal to one,
then the ith individual loop will be executed serially. Hence,
the speedup of the ith individual loop is the maximum of f3;
and 1. The total speedup obtained by simple cycle breaking
is the product of the speedups of individual loops.

The second version is true dependence cycle breaking or
TD cycle breaking. In this version, only true distances are
used. Each dependence arc is labeled by its true distance
computed by Eq. (1). Cycle breaking is applied to the nested
loop as if it is a simple loop. The true distance of the
dependence cycle is computed as follows.

3

pr= Z; (B:F I;!IN j) @

In this case, the multidimensional iteration space of the
nested loop is treated as a linear space. TD cycle breaking
partitions instances of the linearized iteration space into
groups containing B consecutive instances. The speedup
obtained by TD cycle breaking is Br.

The last version is selective cycle breaking. In this ver-
sion, we consider each element of the distance vectors
separately as in the case of simple cycle breaking. Each
dependence in a cycle is labeled with the corresponding
element of its distance vector. Selective cycle breaking
computes the cycle distance B; for each loop i in the nested
loop starting from the outermost loop. This process stops
when there exists some j, 1 < j <k, such that B; > 1. Then,
the jth loop is blocked by a factor of B;. In addition, all loops
nested inside the jth loop are transformed into DOALL
loops. The speedup obtained by selective cycle breaking is
given by the following equation.

m
Bs=B; [T~
i=+1
For example, consider the loop in Fig. 3(a). Two state-
ments are involved in the dependence cycle §; 8; S, 8, S;.

3

26

The degendence distance vectors are <¢11, ¢21> =<2,4>and
<¢12, &3> = <3,5>. It will be transformed into the loop in
Fig. 3(b) if simple cycle breaking is used. The speedup
obtained by simple cycle breaking is 45. If selective cycle
breaking is used, it will be transformed into the nested loop
in Fig. 3(c) and the speedup will become 5N,. If TD cycle
breaking is used, it will be transformed into the nested loop
in Fig. 3(d) and the speedup will become SN+9.

3. Loop reordering

Note that both TD cycle breaking and selective cycle
breaking are special cases of applying cycle breaking to the
linearized iteration space of a nested loop. For these two
schemes, the order in which a multidimensional iteration
space is linearized can dramatically affect the parallelism
extracted by cycle breaking. Itis possible to greatly enhance
the parallelism extracted from a nested loop by rearranging
the order in which its multidimensional iteration space is
linearized. Two loop reordering transformations are inves-
tigated in this section. They are loop interchange [1] and
loop reverse. For TD cycle breaking, methods to determine
the optimal execution order of loops will be proposed.

The key characteristic of loop interchange is its ability to
change the order in which loops are executed. Interchang-
ing loop i and loop j also interchanges pairwisely the ith
elements and the jth elements of distance vectors. Accord-
ingly, the ith element and the jth element of the cycle
distance vector is also interchanged. It is possible for TD
cycle breaking to extract more parallelism through loop
interchange. As an example, consider the loop in Fig. 3(a).
If the two loops in Fig. 3(a) are interchanged, the paral-
lelism extracted by TD cycle breaking will become 9N+5.
For this example, more parallelism can be extracted through
loop interchange if 9N1+5 > 5N+9. The following theorem
provides the sufficient and necessary condition for extract-
ing more parallelism through loop interchange.

Theorem 4: Let loop i and loop i+1 form a perfectly
nested loop. More parallelism can be extracted by inter-
Bin B
Niy—1 7 N-U

Proof: Let B and B’ be the parallelism extracted by TD
cycle breaking from the original loop and the interchanged
loop, respectively. More parallelism can be extracted by
interchanging loop i and loop i+1 if and only if "~ > 0.
From Eq. (4), we can derive the following equation.

m
B =B = (BisiNi + Bi— BNiv1 — Bist) [N
i+
Hence, more parallelism can be extracted if and only if
BiaiNi + Bi— BiNiv1 — Biv1 = Bis1 Vi = 1) = BiNipy = 1) > 0.
This completes the proof of this theorem. |

changing these two loops if and only if

According Theorem 4, we can determine the optimal
execution order of loops as follows. Let f; / (N; — 1) be the
key of loop i. First, we sort loops according to their keys in
descending order. Then, we interchange loops according to
their orders in the sorted list. The first loop in the sorted list
should be the outermost loop in the interchanged loop while
the last loop in the sorted list should be the innermost loop
in the interchanged loop. Finally, TD cycle breaking is
applied to the interchanged loop.

The key characteristic of loop reverse is its ability to
reverse the order in which iterations of an individual loop
are executed. This changes the signs of the corresponding
elements of distance vectors. In general, reversing loop i
changes the signs of the ith elements of the distance vectors.
The sign of the ith element of the cycle distance vector is
also changed. The parallelism extracted by TD cycle break-
ing may be enhanced through loop reverse. For example,
consider the loop in Fig. 4(a). Its cycle distance vector is
<5,-9> and the parallelism extracted by TD cycle breaking
is SN-9. If the innermost loop in Fig. 4(a) is reversed as
shown in Fig. 4(b), the cycle distance vector will become
<5,9> and the parallelism extracted by TD cycle breaking
will become 5N,+49.

Let B; denote the ith element of the cycle distance vector.
If B; < 0O, reversing loop i will enhance the parallelism
extracted by TD cycle breaking. On the other hand, if B; >
0, reversing loop i will reduce the parallelism extracted by
TD cycle breaking. In order to extract as more parallelism
as possible, we should reverse those loops whose cor-
responding element of the cycle distance vector is negative.
Then, apply loop interchange to the reversed loop. Finally,
apply cycle breaking to the interchanged loop.

4. General dependence graphs

In this section, we discuss cycle breaking for nested
loops with general dependence graphs. The problem with
general dependence graphs is that there may exist many
cycles and each cycle may has its own cycle distance. The
solution is to focus our attention on shortest paths. Let A(i j)
be the distance of a dependence arc from an instance of S;
to an instance of S; and B(i,j) be the distance of a shortest
path from an instance of S; to an instance of §;. The matrix
B can be computed from the matrix A by the ALL PAIRS
SHORTEST PATHS algorithm [3]. The time complexity is
0(n3). The offsets are given by the following equation.

pu;=0 and p;=B(1,i) fori> 1.

Let B be the number of consecutive instances in a group.

Lemma 1 still holds if the following inequality is satisfied.
B < min B(i,i) 6)
1

However, there may not exist a valid execution order of
groups for any P satisfying Eq. (6). The following theorems

27

give a sufficient condition that there exists a valid execution
order of groups.
Theorem 5 : The following execution order of groups is
acyclicif <1+ min,_l B(i i)/n.
1. Group Vl is executed flrst
2. If i+ AGy) + 1<+ B, V is executed before V
for any k.
3. V Vis executed before V for any i, j, and k.
Proof: We shall prove this theorem by contradiction.
Suppose that the above execution order is cyclic. Without
loss of generality, we may assume that groups V; through
V form a cycle. Then, we have the following inequalities.

W+ A+ + 1< B+ piyg (7a)
Wipp + AG+HLAH2) + TS B+ iy (7b)
Hip+AG-1)+ ISP+ (7c)
i+ AGH)+ 1B+ (7d)

Accordingly, we can derive the following inequalities.
AG i+)+ . +AG=1 A IH(=i+1) < (—i+1)B.
B(i 0) + (j-i+1) < -+ D).

B =1+ B(ii)/(—i+1).

However, this contradicts the original assumption.
Therefore, the above execution order of groups is acyclic
under the original assumption.

Theorem 6 For any group V, the instances in V are free
of dependence sinks if groups are executed according to the
execution order in Theorem 5.

Proof: First, consider group Vlo By definition, group Vl
contains no instance. Hence, this theorem is true for Vy'.

Next, consider group Vk LetS (r) be an instance of Vk
We have (k-=1)B+u+1 <r < kB+p Suppose that S{r) i 1s a
dependence sink of some dependence d;; ij- The correspond-
ing dependence source must be S;(r-A(i,)). Accordingly,
(k=DB+u-AG)+]1 S r-AGy) < kBﬂlj—A(l,]) Note that, by
definition, pL—-A(iy) < W;. There are two possnbnlmes

1. S{(r-A(i)) is an instance of group V and I <k.
According to rule 3, Vl is executed bcfore V}k

2. S(r-A(i,)) in an instance of V By definition,
(k=1)B+U+1 < r-A(i) < kB+u; ~A(1,/) According
to rule 2, V; is executed before Vf.

From the above discussion, we can conclude that the
instances in V,k are free of dependence sinks according to
the execution order in Theorem 5. Since any group must be
one of theses cases, this theorem is true for any group. M

Theorem 5 and Theorem 6 ensure that there exists a valid
execution order of groups if the number of instances in a
group is chosen appropriately. From Eq. (7), we know that
the existence of a valid execution order of groups depends
on the number of instances in a group only. Therefore, the
maximum number of instances in a group under the con-
straint that a valid execution order of groups exists can be
determined by a binary search.

5. Conclusions

In contrast to partial loop partition and cycle shrinking,
cycle breaking deals with instances rather than iterations.
Theoretically, this approach will extract more parallelism.
For a single dependence cycle, cycle breaking is always
superior to partial loop partition and cycle shrinking. We
have proposed several versions of cycle breaking for a
nested loop by linearizing its multidimensional iteration
space. Methods to determine the optimal linearization order
of loops have been proposed. These techniques can enhance
the parallelism of a nested loop.

Acknowledgements

This work was supported by National Science Council,
Taiwan, under the contract no. NSC 79-0416-E002-02, and
by the TeleCommunication Lab., Ministry of Communica-
tion, under the contract no. TL-79-021.

References

[1] J. R. Allen, and K. Kennedy, “Automatic loop inter-
change”, ACM SIGPLAN Notices, vol. 19, no. 6, pp. 233-
246, June 1984.

[2] M. Burke, and R. Cytron, “Interprocedural Dependence
Analysis and Parallelization,” ACM SIGPLAN Notices, vol.
21, no. 7, pp. 162-175, July 1986.

(3] E. Horowitz, and S. Sahni, Fundamentals of Computer
Algorithms, Computer Science Press, Inc., 1978.

[4] D.J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, “The
structure of an advanced vectorizer for pipelined proces-
sors,” in Proc. Fourth Int. Comput. Software Applications
Conf., pp. 709-715, Oct. 1980.

[5] D. A. Padua, D. J. Kuck, and D. H. Lawrie, “High-speed
multiprocessors and compilation techniques,” IEEE Trans.
Comput., vol. C-29, pp. 763-776, Sep. 1980.

[6] C.D. Polychronopoulos, “Compiler Optimizations for En-
hancing Parallelism and Their Impact on Architecture
Design,” IEEE Trans. Comput., vol. C-37, no. 8, pp. 991-
1004, Aug. 1988.

DOI=3N
Si: A)=B(3-2)-1
S2: B =A(I-3)*K
ENDDO

(a)
$13) S1@) S1(5) S1(6) Si(D|S18) $19) $1(10) ...

DOSERJ=-2,N,5
DOALL I = max(J,3), min(J+4,N)
Si: AD=B(1-2)-1
ENDDO
DOALL I = max(J+3,3), min(J+7,N)
S2:B()=A(-3)*K
ENDDO
ENDDO

©)
$203) S24) S200|[S2(6) S2(7) S2(8) S2(9) S2(10) ...
(b)
Figure 1. An example of cycle breaking.
DOI1=1,N DOALLJ=1,g
S1 DOSERI=J,N, g
S1
Sn
ENDDO Sn
(a) ENDDO
DOSERJ = 1-f,N, B ENDDO
DOALL I = max(J+p1,1), min(J+p1+B-1N) (c)

S1
ENDDO

DOALL I = max(J+}in, 1), min(J+pa+B—1.N)
Sn
ENDDO
ENDDO

(b)

DOSERJ=1,N,A
DOALL I =J, min(J+A-1,N)
S1
Sn
ENDDO
ENDDO

@

Figure 2. Comparison of cycle breaking with partition and cycle shrinking.

DOI=3,N;
DOJ=5N2
S1: A(L)) = B(I-3,J-5)
S2: B(L)) = A(1-2,J-4)
ENDDO
ENDDO

(a)

DOSERK =-2,Ny, 5
DOSERL =-4,N2,9
DOALL I = max(K,3), min(K+4,N1)
DOALL J = max(L,5), min(L+8,N2)
S1: A(LJ) = B(I-3,]-5)
ENDDO
ENDDO
DOALL I = max(K+2,3), min(K+6,N1)
DOALL J = max(L+4,5), min(L+12,N2)
S2: B(IJ) = A(1-2J-4)
ENDDO
ENDDO
ENDDO
ENDDO

(b)

DOSERK = -2,N1, 5
DOALL I = max(K,3), min(K+4,Ni)
DOALLJ =5,N2
S1: A(LJ) = B(-3J-5)
ENDDO
ENDDO
DOALL I = max(K+2,3), min(K+6,N1)
DOALLJ =5, N2
S2: B(LJ) = A(I-2,J-4)
ENDDO
ENDDO
ENDDO

©

DOSER K = 0-f, (N1-2)*(N2—4)-1, B
T1=(KDIV(N24)) +3
T2 =(KMOD (N2-4)) + 5
T3 = ((K+p-1) DIV (N2-4)) + 3
T4 = ((K+p-1) MOD (N2—4)) + 5
PARBEGIN
DOALLJ=T3,N2
S1: A(T1,]) =B(T1-3,]-5)
ENDDO
DOALLI=TI1+1, T2-1
DOALLJ=5,N2
S1: A()) = B(I-3,J-5)
ENDDO
ENDDO
DOALLJ=5,T4
S1: A(T2,J) = B(T2-3,J-5)
ENDDO
PAREND
T5 = (K+p2) DIV (N2-4)) + 3
T6 = ((K+u2) MOD (N2—4)) + 5
T7 = (K+p2+p-1) DIV (N2—4)) + 3
T8 = (K+u2+f-1) MOD (N2-4)) + 5
PARBEGIN
DOALLJ=T7,N2
S2: B(TS5.J) = A(T5-2,]-4)
ENDDO
DOALLI=T5+1, T6-1
DOALLJ=5,N2
S2: B(L)) = A(1-2J-4)
ENDDO
ENDDO
DOALLJ=5,T8
S2: B(T6,J) = A(T6-2,]J-4)
ENDDO
PAREND
ENDDO

@

Figure 3. An example of three versions of cycle breaking for nested loops.

DOI=3,N;
DOJ=5N2
S1: A(LJ)=B(1-3,J+5)
S2: B(1,J) = A(I-2,J+4)
ENDDO
ENDDO

(a)

DOI=3,Ni
DOJ=N2,5,-1
S1: A(IJ) = B(I-3,J+5)
S2: B(1J) = A(0-2,J+4)
ENDDO
ENDDO

(b)

Figure 4. An example of loop reverse.

