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ABSTRACT

In this paper, the optimum structure for cas-
cade adaptive filter is discussed. Different forms to
implement the optimum structure are studied. For
the tracking of noisy sinusoids, we propose a ring
structure to implement it. The use of ring struc-
ture reduces the required N? cells of notches in the
optimum structure to be N cells only. Necessary
conditions that allow this reduction are given.

INTRODUCTION

Over a long period of time, adaptive filtering
was an active area of research[1]. Some important
application are linear prediction, echo cancellation
and channel equalization[l]. Two types of filter
used frequently in filtering are finite impulse re-
sponse (FIR) and infinite impulse response (IIR)
filters. Several realization forms can be utilized,
such as direct, parallel, lattice and cascade forms.
In this paper, we will discuss the optimum cascade
structure.

Using adaptive filters to track and enhance nar-
row band signals also received substantial atten-
tion [2-5], which is known as adaptive notch filter
(ANF). Frequently, the ANF is implemented by the
direct form IIR filter[2]. Its disadvantage is that
the tracked frequency must be obtained by roots
finding and it is not easy to check the stability.
Therefore, a cascade form is recommended. The
parameters of cascade form can be adapted by two
ways. First, each notch cell is adapted individually.
Second, each notch cell is adapted simultaneously.
The former structure yields biased frequency es-
timtes even in the absence of noise[3]. This is due
to the coupling of different frequency components
via nonoptimum computation of gradient compo-
nents.
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Therefore, simultaneous adaption is better than in-
dividual adaption[3].

After discussion of the optimum cascade struc-
ture, we propose a ring structure to implement it.

THE OPTIMUM STRUCTURE FOR
ADAPTIVE CASCADE FILTER

A commom criterion used in adaptive filtering
is to minimize the mean square error (MSE) & de-
fined as follows:
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where e(n) = d(n) — z(n) and d(n) is the desired
signal. The filter’s coefficients are up dated accord-
ing to some adaptive algorithms, such as stochastic
gradient (SG) algorithms or Gauss-Newton algo-
rithms. No matter which algorithm is used, the
computation of gradient components which are the
derivatives of £ with respect to the filter’s coeffi-
cients is necessary.

It is convenient to interpret the adaptive fil-
tering in frequency domain. Assuming that E(z)
denote the z-transform of e(n) and X(2) the z-
transform of z(n), then E(z) can be expressed as

E(z) = H(2)X(2), 2

where H(z) denotes the transfer function of the
filter to be adapted.

The cascade form can be generated by factoring
H(z) into the product of N least order filters, i.e.,

N
H(z) = HHi(z)' ®3)

The derivatives of e(n) with respect to Hi(z)’s co-
efficients can be obtained by filtering the input sig-
nal z(n) through a filter with the following transfer
function[9],
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where S;(2) known as sensitivity filter is shown as

0H ,'(Z)

a (8)
with L being the number of coeficients in H;(2) to
be adapted.

From Tellegen’s theorem[5], the sensitivity fil-
ter can be shown to be a cascade of two sets of
filters. Transfer function of the first filter is equal
to the transfer function from the input of H;(2) to
the node just before the parameter, a;;. The sec-
ond one is just after a;; to the output of Hi(2). A
total number of N2 filter cells are required to com-
pute the overall partial derivatives with respect to
one a;;. Assuming N = 4, the resulting structure
is show in Fig.1, which is named matrix form here-
after. The coefficient to be a adapted is inside the
i — th cell marked S;. The required filtering be-
fore S; is defined as prefiltering and that after S;
is defined as postfiltering.

To fully implement the matrix form in hard-
ware, the number of filter cells are large. How-
ever, reduncies in this form enable us to implement
it with tree structure[6] as well as ring structure.
The implementation of ring structure for the spe-
cial case of adaptive notch filter is given in the next
section.

S,‘(Z): I=1)'“)L1

RING STRUCTURE FOR ADAPTIVE
NOTCH FILTER

For tracking sinusoids corrupted by white noise,
the input signal is

M
z(n) =) Aisin(2rfin+ i)+ w(n)  (6)

i=1

where w(n) is the additive Gaussian white noise,
fi» A; and ¢; are the frequency , amplitude and
phase of the ith sinusoid.

Becasuse the notch filter posseses the charac-
teristic of unit gain and zero phase, it is suitable
to use it as H;(z). Here, we adopt the minimum
parameter structure proposed in [7]:
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Hi(z) = @)
where p is the radius of pole. For stability , p has
to be smaller than 1. The frequency under tracking
can be obtained by

1 1,04
fi = —5=Cos(3) ®)

The 3dB rejection bandwidth of H;(z) is given by
®)

The implementation of the matrix form for track-
ing sinusoids with notch filters can be approximated
by a rotated (right-shift) matrix form given in Fig.2.
The main difference from Fig.1 is that the data in-
put points and gradient components output points
are changed. This change makes the required pre-
filtering and postfiltering in the matrix form be
replaced by prefiltering only in the rotated ma-
trix form. The rotated matrix form still has N2
notches which can be reduced easily to N notches
as the ring structure given in Fig.3., if we reuse the
notches with time-sharing schemes. That is, the
rotated matrix form is just the temperally decom-
posed form of the ring structure.

The ring structure can be used to implement
the optimum matrix form even postfiltering is not
replaced by prefiltering. If this replacement does
not cause problem, the rotated matrix form will
be a good choice since it has a much simpler con-
trol structure than the optimum matrix form. This
simplicity could be an important concern in hard-
ware implementation of the ring structure.

In general, if the cells are FIR filters, there is no
difference between the matrix form and the rotated
form. If the cells are IIR filters, theoretically the
rotation is not allowed since an adaptive IIR filter
is a time-varying system with memory and rotation
will cause permutation of cells which will mix up
the time-varying memory. However, for the case of
sinusoid tracking with IIR notch filters, it can be
shown that its Hessian matrix will be asymptoti-
cally diagonal(3], therefore there is no problem in
permuting the notches.

For the case of adaption by Newton-Raphson
algorithm the coefficient updating equation is

B.Waa = (1 —p)

bnt1 =0, — Azte(n)G(n), (10)
wheref,, is the current coefficient vector:
0"2(01,02,"',0N)T, (11)

A, is the Hessian matrix of £ at §,, and G, is the
gradient vector of € at 6, i.e.,

Gn = (91(n),g2(n),--,gn(n))T.  (12)

From equation (10), there are interactions among
gradient components and coefficients through the
Hessian Matrix. However, just as said before that
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the Hessian Matrix will reduced to a diagonal ma-
trix asymptotically. So that, the Newton-Raphson
algorithm can be approximated by a normalized
least mean square (NLMS) algorithm. If the diag-
onal terms are set equal to a scalar u, one gets the
LMS algorithm. No matter whether LMS or NLMS
algorithm is used, the update of H;(2)’s coefficient
doesn’t use the information of gradient components
from other cells. This will simplify the operation
of A; appearing in Fig.3.

In reality, the tracking errors e;(n) at the out-
put of each rows in Fig.2 are not the same, in order
to avoid the situation that different row minimize
different error function, we average e;(n) to form a
new error e;(n), i.e.,

N
eln) = Se(n (13)

The alternative structure is shown in Fig.4, which
is named summed matrix form.

COMPUTER SIMULATION

In order to show the performance of the rotated
and summed matrix form, we carry out the follow-
ing simulations. We adopt the LMS algorithm([8]
to adjust o; because it does not require any matrix
inversions or divisions. The update of i —th filter’s
coefficient is according to

ai(n+1) = ai(n) - pe(n)gi(n)  (14)

In the following example, we demonstrate the ca-
pability of the structure when the rotated matrix
form is implemented to track three close sinusoids.
The given sinusoidal frequencies are 0. 10, 0.12
and 0.14 and all sinusoids have a SNR of 0 dB. In
addition, after 1500 iterations, the given frequen-
cies are changed to 0.14, 0.17 and 0.20 respectively.
The notches’ initial frequences are set at 0.03 , 0.05
and 0.16 and p is set to 0.95. The step size, p is
0.030. When computing the gradient components,
we adopt the pseudo linear assumption[4]. Refer-
ring to Fig.5, it is the learning curve of the direct
cascade structure[l] which adapts each notch’s co-
efficient individually. It is obvious that the track-
ing behaviour is not good. The variances of three
tracked frequencies are obviously different. Fur-
thermore, there are severe coupling among frequen-
cies tracked by each notch. Fig.6 is the learning
curve for the structure shown in Fig. 2. The three

frequencies are decoupled well. From the learn-
ing curve, the tracking rate are almost identical for
these three motches, thus proposed structure has
the ability to track abrupt change in frequency.
Fig.7 is the learning curve for the structure shown
in Fig.3. Comparing to Fig.6, their performance
are almost identical.

CONCLUSION

Adaptive cascade structures for tracking multi-
ple sinusoids has been studied and they can be im-
plemented by the ring structure. Some necessary
conditions to allow the ring-structure implememta-
tion are analyzed. From computer simulations, it
is found that the ring structure might not degrade
the performance of the optimum structure while
reducing the number of cells from N? to N.
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Fig.1 The matrix form for computing the gra-
dient components of optimum cascade
structure

A : Adaptor
P : Prefiiter

D : Distributor
ey

Fig.3 The ring structure for implementation of Fig.3.
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Fig.5 The tracking curve of direct cascade form
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Fig. 2 The rotated matrix form for computing
the gradient components.

Fig.4 The structure minimizing the summed error.

Normalizeud Freguency

: L .
[ 600 1200 1900 2400 3000
Iteration

Fig.8 The tracking curve of the rotated matrix structure
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Fig.7 The tracking curve of Fig.4
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