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ABSTRACT 

In this paper, two novel methods are proposed for design- 
ing complex allpass filters with equiripple phase responses 
using Remez exchange algorithm. One is based on solving 
simultaneous equation, the other is based on the maximum 
eigenvalue problem. In each method, satisfactory solution is 
obtained through a few iterations without any initial guess 
of the solution. One example is presented to show the ef- 
fectness of the methods. 

1. INTRODUCTION 
In many signal processing applications, it is desired to de- 
sign an allpass filter with prescribed phase or group delay 
characteristic [1]-[4]. Recently, two Remez algorithms are 
developed to design allpass filters with equiripple phase re- 
sponses. One is that Ikehara presented a design algorithm 
to approximate the phase response of a complex coefficient 
allpass filter by solving linear simultaneous equations [5 ] ,  
the other is that Zhang proposed a design procedure to ob- 
tain the filter coefficients of real allpass filter by computing 
an eigenvector corresponding to maximum eigenvalue [6].  
Both algorithms give quite satisfactory results through a 
few iterations without any initial guess of the solution. 

In this paper, two novel methods are proposed for design- 
ing complex allpass filters with equiripple phase responses 
using Remez exchange algorithm. The design procedures of 
both methods are derived from the same key equation. In 
the first method, the filter coefficients are obtained by solv- 
ing simultaneous equations. Although the solution and the 
number of iterations of this method are almost the same 
as those of Ikehara method, the computation load of our 
algorithm is less than Ikehara algorithm. As to the sec- 
ond method, the optimal filter coefficients are obtained by 
solving maximum eigenvector problem. In fact, the second 
algorithm is an extension of Zhang algorithm. The differ- 
ence between them is that our algorithm considers complex 
coefficient allpass filter design, but Zhang algorithm con- 
cerns real coefficient allpass filter design. 

2. COMPLEX ALLPASS FILTER 
The transfer function of a N-th order complex allpass filter 
is defined as 

where a ( n )  is a set of complex filter coefficients given by 
a ( n )  = a,(n)  + j a l ( n )  and * denote complex conjugate. 

Since IA(ej")l = 1 for all w ,  we have 

where O(w) is the phase response of A ( z ) .  Assuming that 
the desired phase response is Od(w), the desired allpass filter 
frequency response Ad(ej") is given by 

The desired phase response of a stable complex allpass filter 
must have the following properties [5 ] :  

(1) f f d ( 2 ~ )  = 8 d ( ~ )  - ~ N T .  
(2) O d  (U )  decrease monotonically with increasing fre- 

quency. 
Assuming that the phase error & ( U )  = O(w)-Bd(w),  then 

it can show-that 

(4) 

where B(ej")  is the amplitude of the complex error E(ej") 
between A(ej")  and Ad(ej") [5]. Since sin(z) monotonically 
increases as x increases, if an allpass filter can be designed 
such that h ( e j w )  is equiripple, Oe(w) can be also equiripple 
and the maximum phase error is minimized. This obser- 
vation is the basic idea of phase approximation algorithm 
developed by Ikehara [ 5 ] .  

Instead of using eq(4) to develop design algorithm, we 
derive another phase error relation as follows. From eq(l), 
we can show that 

With some manipulation, we have 

where numerator 

C ( w )  = 

+ 

D(w)  = 

+ 

and denominator of @(U) are given by 

n=O 

1 N w  + & ( U )  

2 ar (n) sin(nw - (7)  
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Since tan(x) monotonically increases as II: increases, if an 
allpass filter can be designed such that function @ ( U )  is 
equiripple, ee ( w )  can be also equiripple and maximum phase 
error is minimized. In next section, we do not approximate 
the desired phase response directly, but indirectly by using 
function @ ( U ) .  

3. TWO DESIGN ALGORITHMS 
In this section, two approximation algorithms are proposed 
for designing allpass filter with equiripple phase response 
by using function @ ( U ) .  One is based on solving simulta- 
neous equation, the other is based on maximum eigenvalue 
problem. 

3.1 Des ign  A lgor i thm 1 
In order to use Remez exchange algorithm, we select 

2(N+ 1) appropriate frequency points w;( i  = 0,1, .  . . ,2N+ 
1) in the specified frequency range. Then, an allpass filter is 
designed such that filter coefficients satisfies following con- 
dition 

where S is an initial error. Combine eq(G)(7)(8), we obtain 
@ ( U ; )  = (-1yS (8) 

n=O 

) = (-l)iSD(wi) Nu,  +Od(Wi) 
2 a,(n) sin(nwi - (9) 

Moreover, eq(9) can be represented in matrix form as 

sin q ( 0 , O )  - cos 9 ( 0 ,  0) ' ' ' 

sin q ( 1 , O )  -cos *(l, 0) ' .  ' 
. . .  

sin *(2N, 0) - cos i (2N,  0) . . . 
sin q ( 2 N  + 1 , O )  -cos 9 ( 2 N  + 1 , O )  . . . 

1 sin q ( O ,  N )  
sin Q(1, N )  

-cos * ( O ,  N )  
- cos Q(1, N )  

sin *(2N, N )  
sin e ( 2 N  + 1, N )  

-cos 9(2N,  N )  
-cos q ( 2 N  + 1, N )  

where 9(i,  n) = nwi - N'"i+:d(wi),  The eq(l0) has the same 
form as eq(1G) in [5] except the vector in right side is mod- 
ified. Thus, similar iterative approximation algorithm can 
be developed as follows: 
Procedure of Algorithm 1: 
S tep  1. Read order N ,  initial 6 ,  and the desired phase re- 
sponse e d  (w). 
S t e p  2. Select initial extremal frequencies w;(i = 0,1,  
. . . ,2N+ 1) equally spaced in the specified frequency range. 
S t e p  3. Set D(w; )  = 1, i = 0,1, .  . . ,2N + 1. 
S tep  4 .  Compute a set of coefficients of a complex allpass 
filter by solving simultaneous equation eq( 10). 
S tep  5. Calculate @ ( U )  and search the extremal frequencies 
of @ ( U ) .  Store them into w i .  
S tep  6. If Iw: - w;I 5 E ,  then go to S tep  10. Otherwise go 
to S tep  7. Note that E is a prescribed small number. 
Step 7. Let wz = w;  and set 6 = 6 
S tep  8. Compute D(wi )  according to eq(7). 
S t e p  9. Go to S t e p  4 .  

2N+1 
I@(wi)l. 

S t ep  10. Compute the transfer function A(ej") and plot 
the phase response. 

In this algorithm, we start with D ( w )  = 1 and continue 
D ( w )  calculated by an obtained set of coefficients on the 
previous pass. As to the convergence, this algorithm has 
same behavior as algorithm in [5]. 

3.2 Des ign  A lgor i thm 2 
In order to formulate the approximate problem into a 

maximum eigenvalue problem, substitute eq(6) into eq(8) 
to  yield 

We can rewrite eq(l1) in matrix form as 
C ( W i )  = (-l)iSD(w;) (11) 

(12) Pa = SQa 

where matrix P,Q and vector a are given by 

sin 9 ( 0 , 0 )  
sinq(1,O) 

sin 9(2N,  0) 
s inq(2N + 1 , O )  

sin 9 ( 0 ,  N )  
sinq(1, N )  

sin 9 (2N, N )  
sin 9(2N + 1, N )  

-cos Q(0,O) ' ' ' 

- cos 9(1,0)  ' ' .  

cos q ( 0 , O )  
- cos l P ( 1 , O )  

- cos9(2N+1,0)  
cos 9 ( 0 ,  N )  

-cos9(1,N) 

cos q (2 N ,  0) 
Q =  [ 

cos Q(2N, N )  
- cos Q(2N + 1, N )  

-cos *(2N, 0) 
- cos q(2N + 1 , O )  

-cos 9 ( 0 ,  N )  
- cos Q(1, N )  

- cosQ(2N + 1, N )  

' ' ' 

. . ' 

1 - cos *(2N, N )  

sin q ( o , O )  . . .  
-sin 9 ( 1 , 0 )  . . . 

sin 9 ( 2 ~ ,  0) . . . 
-sin q(2N + 1 , O )  . . . 

sin 9 ( 0 ,  N )  
-sin Q(1, N )  

sin 9 (2N, N )  
-s inQ(2N+ 1 , N )  

. . .  

J 
a = [ a,(o) ar(O) . . . ~ T ( N )  a r ( ~ )  I t  

Follow the same reason in real case [GI,  we have P is a 
nonsingular matrix. Thus, the eq(12) can be rewritten as 

(13) 
1 
6 -a = p-l &a 

The eq(13) has the same form as eq(l0) in [6] except matrix 
P,Q, and vector a have different definition. Thus, a similar 
iterative algorithm can be stated as follows: 
Procedure of Algorithm 2: 
Step 1. Specify order N and the desired phase response 

S t e p  2. Select initial extremal frequencies w,(i = 0 , 1 , .  . . , 
2N + 1) equally spaced in the specified frequency range. 
S t e p  3. Compute matrix P,  Q and find the maximum eigen- 
vector of P-lQ to obtain the coefficient vector a. 
S tep  4 .  Calculate @ ( U )  and search the extremal frequencies 
of @(U) .  Store them into U:. 

S tep  5. If Iw: - wzl 5 E ,  then go to S t e p  6. Otherwise set 
wz = w: and go to S t e p  3. Note that E is a prescribed small 
number. 
S tep  6. Compute the transfer function A(e3") and plot the 
phase response. 

Qd(w). 
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4. DESIGN EXAMPLE AND CONCLUSION 
In this section, one design example is presented to com- 
pare the performance between our approaches and Ikehara’s 
method. The desired phase response considered here is 
given by 

W 
Od(w) = -9w + 27rsin(-) 0 L W  5 27r (14) 

2 

A ninth-order allpass filter is designed, the obtained phase 
response and phase error are depicted in Fig.1. We can see 
that the phase error are equiripple with 20 extrema for each 
proposed algorithm. Table 1 lists the obtained filter coef- 
ficients. It is obvious that the proposed methods almost 
have the same coefficients as Ikehara’s method. Moreover, 
Table 2 illustrates the convergence behavior of the peak 
phase error. From this reseult, we see that the proposed 
algorithm 2 has the fastest convergence speed among three 
design methods. Finally, the CPU time and the resultant 
maximum phase error are listed in Table 3. It is clear that 
both proposed algorithms take less design time than Ike- 
hara’s method, but the peak phase errors are all identical. 

In this paper, two effective methods have been proposed 
for designing complex IIR allpass filters. One example is 
presented to  show the effectness of the methods. 
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a(n> Ikehara method Algorithm 1 Algorithm 2 

a(0) 

a(1) 

a(2) 

43 )  

44)  

a(6) I 0.0067660 + 0.0121137 i 
I I I 

I 0.0067660 + 0.0121 137 i I 0.0067660 + 0.0121 137 i 

0.2103299 - 0.4603836 i 

- 0.6144316 - 0.2807849 i 

- 0.3107566 + 0.3534777 i 

0.0537756 + 0.2233129 i 

0.0673107 + 0.0624107 i 

0.2103299 - 0.4603836 i 

- 0.6144316 - 0.2807849 i 

- 0.3107566 + 0.3534777 i 

0.0537756 + 0.2233129 i 

0.0673107 + 0.0624107 i 

0.2103299 - 0.4603836 i 

- 0.6144316 - 0.2807849 i 

- 0.3107566 + 0.3534777 i 

0.0537756 + 0.2233129 i 

0.0673107 + 0.0624107 i 

a(7) 1 -  0.0022844 + 0.0256163 i I-  0.0022844 + 0.0256163 i I-  0.0022844 + 0.0256163 i 
I I I 

a(5) 0.0293758 + 0.0188086 i 0.0293758 + 0.0188086 i 0.0293758 + 0.0188086 i 

Table 2. The convergence behavior of the peak phase error. 

1 Algorithm 2 1 0.566411 0.860981 0.671471 0.261881 0.130271 0.10247) 0.1(1135) 0.101351 0.10135/ 

a(8) 

49 )  

0.0264943 + 0.0323728 i 

0.0275723 - 0.0125971 i 

0.0264943 + 0.0323728 i 

0.0275723 - 0.0125971 i 

0.0264943 + 0.0323728 i 

0.0275723 - 0.0125971 i 

lo- 

peak phase error 

CPU time 

g-io 

0 0.2 0.4 0.6 0.8 1 
frequency (+2pi) 

-20 

Ikehara method Algorithm 1 Algorithm 2 

0.10135 

57.89 sec 

0.10135 0.10135 

67.83 sec 66.79 sec 

g-io O h - . . .  

1 
0 0.2 0.4 0.6 0.8 1 

frequency (+2pi) 

-20’ 

- 0.2 
-D 

$ 0.1 

g o  
0 ; -0.1 

%*- 0 0.2 0.4 0.6 0.8 1 

frequency (‘2pi) 

P d  
0 0.2 0.4 0.6 0.8 1 

-20 

frequency (‘2pi) 
0 2  

B 
$ 0.1 

$ 0  
U 

c 
2 -0.1 

0 0.2 0.4 0.6 0.8 1 
frequency (‘2pi) 

a-0.2 

P : b  
0 0.2 0.4 0.6 0.8 1 

-20 

frequency (*2pi) 
0.2 

6 1  I 
$ 0.1 

E o  
U 

r 
; -0.1 
a I 

0 0.2 0.4 0.6 0.8 1 
frequency (‘2pi) 

-0.21 

(c) 
Fig. 1 . Phase response and phase error (a) Ikehara method (b) Algorithm 1 (c) Algorithm 2. 
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