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Abstract: The paper is devoted to performance 
robustness analysis of uncertain state-space 
models with linear parametric uncertainties and 
output feedback. The purpose is to find bounds 
on uncertain parameters within which the system 
H, norm performance index is kept below a 
prespecified value. Through matrix nonsingularity 
analysis, it is shown that the bounds can be 
computed from structured singular values of 
certain composite matrices. To fully utilise the 
structural information of uncertainties, the 
authors also develop a method for reducing 
matrix sizes involved in the computation of 
structured singular value. 

1 Introduction 

Over the years, the precise and fixed linear control 
schemes have been used extensively in many engineer- 
ing applications. While the real system behaviour is 
often described by mathematical formulation, it is 
almost impossible to get an exact model for the system 
due to the existence of various uncertainties. Here, we 
focus on systems with parametric uncertainties. To be 
more specific, we consider linear state-space models 
with uncertain parameters added to system, input, and 
output matrices in a linear fashion. Also, we assume 
that a stabilising output feedback controller is designed 
for the nominal system, hence the closed-loop state 
equations have quadratically coupled parametric uncer- 
tainties in the system matrix. Stability robustness anal- 
ysis of this kind of systems has been addressed by 
various researchers [ 1-41 to obtain maximal uncertainty 
bounds for preserving stability. 

Similar to the case of stability robustness, the per- 
formance robustness problem of uncertain systems has 
also gained considerable attention in the last decade. In 
a large number of literatures, the robust performance 
problem deals with the computation of the worst case 
performance index when the system under considera- 
tion is subject to norm bounded uncertainties [5-71. In 
contrast, here we are interested in determining para- 
metric uncertainty bounds for the preservation of a 
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selected performance specification: the system H, norm 
[SI. Through matrix nonsingularity analysis [4], we 
show that the desired bound can be expressed in terms 
of the structured singular values [9] of composite matri- 
ces formed by using known system and uncertainty 
structural information. The derived bound is necessary 
and sufficient and can be computed to quite good pre- 
cision by using existing structured singular value analy- 
sis tools, such as [lo]. 

As the structured singular value computation prob- 
lems often become rather large when the system dimen- 
sion and number of uncertain parameters are large, we 
propose an algorithm for reducing the matrix sizes 
involved in the calculation of uncertainty bounds. The- 
oretically, this amounts to utilising the structural infor- 
mation of uncertainties to express the original problem 
in a compact form. Numerically, with the matrix size 
reduction the computation speed will often be greatly 
improved for this well known NP-hard [ 1 11 analysis 
problem . 

The notations adopted are as follows. Let IIH12 be 
the H2 norm of the transfer function H(s). n represents 
the considered performance index. y(M, Q) stands for 
the structured singular value of the matrix M with 
respect to a set C2 of block diagonal uncertainty matri- 
ces of a fixed structure [9]. Sometimes the Q part will 
be omitted for the sake of simplicity. The symbol col(.) 
denotes the column stacking operation [12], and a is 
the maximal singular value. Finally, 0 refers to the 
Kronecker sum [12], and 18 is the identity matrix of 
dimension 6. 

2 Problem formulation 

Consider the following linear state-space model with 
uncertainties and constant output feedback: 

(2) 

(3) 
u(t)  = w(t) - Ky( t )  

where x E R", U E Rm, and y E R' are the state, input, 
and output vectors of the plant, respectively, w E Rm is 
an exterior excitation, {APO, BPO, C,,} represent the 
nominal plant dynamics, and K E RmXl is the unper- 
turbed output feedback gain matrix. In eqn. 1, k ,  i = 1, 
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..., p ,  are real uncertain parameters, bounded by 
maxilkil < r .  The matrices {APi, Bp,, Cpi} of suitable 
dimensions are the corresponding structural informa- 
tion matrices of ki, and are assumed to be known. If ki 
does not appear in, for example, output matrix, Cpi = 
0, etc. Substituting eqn. 3 into eqns. 1 and 2, we see 
that the closed-loop system can be written as 

/ P P 

(4) 

or more compactly 

k ( t )  = A(k)z ( t )  + B ( k ) w ( t )  

Y l ( 4  = C ( k ) z ( t )  (5) 
where A0 = Apo - BPoKCpo, Ai = Api - Bp0KCpi - 

Ci = Cpi, and k = [k, k2 ... kPlT. For the sake of 
generality, it is assumed that some A ,  AV, Bi, and Ci 
are nonzero. Also, it is assumed that {Ao, Bo, CO} is a 
minimal realisation. 

To discuss the performance of a system, we must 
have stability first. Thus we assume further that the 
nominal system is asymptotically stable (i.e. eigenvalues 
of A. all lie in the open left half complex plane). Then 
we can use the method of [4] to find a range of k within 
which eqn. 5 is asymptotically stable. The result is a 
necessary and sufficient condition, having the form 

BpiKCpo, Aij = -BpiKCpj, Bo = Bpo, Bi = Bpi, CO = Cpo, 

maxilki) < 1 / p ( M , )  (6) 
where Ms is a matrix depending on Ao, Ais, and AUs. 
Hereafter we shall assume that r is equal to l/p(M,), so 
that the discussion of performance robustness is 
meaningful. 

The performance robustness problem we want to 
consider is as follows. Suppose that we have a perform- 
ance index x{A(k), B(k), C(k)} which is a continuous 
function of k ,  and we know its value for the nominal 
system: n{Ao, Bo, CO} = no > 0. Given a performance 
bound xB > xo, we want to find the largest range of k 
within which x{A(k), B(k), C(k)} < xB. Equivalently, 
we want to find 

r,= inf {max , Ik, 1 : .{A(!$) , B ( k )  ,C(k)}  = T B ,  max ilki I < r }  

Note that, due to the continuity of x{A(k),  B(k), C(k)), 
if there is no k in the set {k :  maxilkil < r> making 
n{A(k), B(k), C(k)> = zB, all k in the set are such that 
n{A(k), B(k), C(k)} < xB. In this case, we say r ,  = r.  
For the case in which Y ,  can not be computed exactly, 
we shall try to find a lower bound for it. 

a 

(7 )  

3 H, norm performance robustness 

In this Section, our discussion focuses on the system H2 
norm performance. 

The H2 norm performance index represents the root- 
mean-square value of the output when the input w(t) in 
eqn. 5 is driven by zero-mean white noises with unit 
covariance. For convenience, we consider the squared 
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performance index x{A(k),  B(k), C(k)} = IIC(k)[sIn - 
A(k)]-lB(k)ll:, which can be expressed as [8, 121 
IIC(k)[Sln - A(k) l - l~ (k ) l l ;  
= colT [C( k )T  C(  k ) ]  [ A ( k )  C€ A( k)]-'~ol[ -B ( k ) B  ( k ) T ]  

Since the asymptotic stability of A(k) guarantees [12] 
the nonsingularity of A(k) 0 A(k), x{A(k), B(k), C(k)} 
is a continuous function of k in the region specified by 
eqn. 6. 

According to the standard problem formulation 
defined in Section 2, assume x{AO, Bo, CO) = no > 0, 
and a xB > xo is given. We must find the smallest 
max,lk,l making x{A(k),  B(k), C(k)> = xB. A Lemma is 
proved first. 
Lemma I :  For all x > xo, the matrix 

(8) 

col'c,Tcol 1 -7r [ col[BoB;] Ao @ Ao 

is noasingular. 
Prooj Since zo = coZr[C~Co](Ao 0 Ao)-lcoZ[-BoB~] and 
TC > ao, it follows immediately that 

(9) 7r + ~ol~[C:Co](Ao @ Ao)-l~~l[BoB,T] # 0 

Moreover, we have det(Ao 0 Ao) # 0 and 

= det(A0 @ Ao) 

# O  

x det{-.j.r - c o l T I C ~ C ~ ] ( A ~  @ A ~ ) - ~ c o l [ B o B ~ ] }  

The conclusion holds. 

i , j =  I, ..., p a n d x B > > o ,  
To proceed, we need some more matrices defined for 

1 0 colTIC:C, + C,TCO] 
A, @ A, 

col[BoBF] Ao @ Ao 

E =  [ -In2+1 "..I 0 

U, =(ele, T + ez+lep+l) T @ I(,z+,) 
e, =the j t h  column of I,+, 

where E, E R(nz+1)x(Z2+1), E, E R(B2+1)x(n2+1), 

R@+l)(n2+l)x(p+l)(nz+1), and U, E R(pf')(n2+1)x@+1)(n2+l), 
E, E RP(n2+l)x(n2+1), E,, E RPtn2+l)x~(n2+1), E E 

Note that, by Lemma 1, these matrices are well 
defined. Now we are in the position to present the first 
result. 
Theorem 1: Suppose the nominal squared H2 norm 
performance index of system eqn. 5 is equal to xo > 0. 
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k i € R , i = l ,  . . . , p }  
Proof: To find the smallest maxilkil such that n{A(k), 
B(k), C(k)} = xB, let 
?TB = C O ~ ' [ C ( ~ ) ~ C ( ~ ) ]  [ A ( k )  CE A( k)]-' col[ -B( k ) B  ( I c ) ~ ]  

Simple manipulation yields 
(11) 

1 
=B 

1 + - ~ o l ~ [ C ( k ) ~ C ( k ) ] [ A ( k )  @ A(k)]-' 

x col[B(k)B(k)T] = 0 
Using the identity det(l,  + X y )  = det(Zp + YX) for all 
X E Raxp and Y E  RBXa, we get 

1 
det(I2 + -[A(k) @ A(lc)]- 'c~l[B(k)B(k)~] 

=B 

x C0lT[C(k)TC(k)]} = 0 
Multiplying both sides by del[&) 0 A@)] # 0 results 
in 

det{[A(k) @ A(k)] - ~ o l [ B ( k ) B ( k ) ~ ]  -- ( =:I 
x colT[C(k)TC(k)]> = 0 

With some matrix elementary operations, it is easy to 
show that the above is equivalent to 

= o  - r B  colT [C( k ) W (  k)] ] 
det [ ~ o l [ B ( k ) B ( k ) ~ ]  A ( k )  @ A(k) 

Since the first block matrix is nonsingular by Lemma 1, 
we may also rewrite the above as 

det + x k ; E i  + k&jEij = 0 (12) 

which falls right into the form of the nonsingularity 
analysis problem discussed in [4]. Thus the result fol- 
lows by straightforward application of the method 
developed in [4]. 

It is worth mentioning that the above result is a nec- 
essary and sufficient condition theoretically. For the 
cases in which the corresponding structured singular 
values can be computed exactly, such as the single 
uncertain parameter case, r,  given by Theorem 1 is the 
largest bound to ensure H2 norm performance robust- 

} 
P P i i=l i , j= l  
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ness in the sense defined in this paper. Hence no con- 
servativeness exists. If the corresponding structured 
singular values cannot be evaluated precisely, numeri- 
cal methods may be adopted to compute reasonably 
good bounds for rZ Furthermore, the result in Section 
4 may help reduce the problem sizes. 

4 Size reduction of the computation problem 

In Section 3 ,  the performance robustness problem 
results in structured singular value computation prob- 
lems of the form: to decide p(M, Q) with M = [WW ... 
w] for some matrix W, and Q a set of diagonal 
matrices A = diag[kll, k21, ..., kpl]. Actually this is the 
same form of computation problem resulted from the 
robust stability analysis problem [4]. When the system 
in discussion has a large state number n and an uncer- 
tain parameter number p ,  the sizes of A4 and A will 
become quite large. Although, up to now, many algo- 
rithms have been developed for computing structured 
singular values to a good precision, the required com- 
putation time grows rapidly with the problem size. 
Thus it is beneficial to do problem size reduction when- 
ever possible. Before we present our result in this 
regard, a generalisation is introduced first, so that the 
robust nonsingularity analysis problem involving frac- 
tional type uncertainties [ 131 can also be discussed. 
Below, we shall consider problems in which the matrix 
A4 does not have repeated blocks Ws, but has different 
blocks W,, W,, etc. The set Q is changed accordingly. 
To be simultaneously general and neat, we consider the 
computation of p(M, Q) with 

and 
M [wuwb] E Rqxq (13) 

(14) R = {A = diag[klIqa, k21qb]} 
where W, E RqX% has rank pa, Wb E RqXqb has rank pb, 
and qa + qb = q. It will be clear from the following dis- 
cussion how to deal with cases in which there are more 
than two Ws. Now, we show that the problem size can 
be cut down if pi < qi for any i = a, b. Again, for the 
sake of generality, we assume pi < qi for both i = a,  b. 
Let the singular value decomposition of Wj, i = a, b, 
respectively, be UiEiViT where Vi E RqX4, Vi E Rqixqi are 
unitary, and Ei E Rqx@ has positive singular values in 
the first pi diagonal positions and zeros elsewhere. So 
we represent each Wi in the partitioned form 

where i, E RpLxpL is the upper right part of 2, and 
[U,, U,,] = U, partitioned accordingly. Since V, is uni- 
tary, we have 

With V = diag[V,, Vb], we can modify the key equation 
det(lq. + MA) = 0 in the structured singular value com- 
putation problem as 

det(Iq + V T M A V )  = det(1, + V T M V A )  = 0 (17) 
Thus we have 

w,V, = U,C, = [U& 01 (16) 

= o  

For i = a, b, let e denote the submatrix of V U j l $  
formed by deleting the (pa + 1)st to the q,th and the 

(18) 
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(qa -I- p b  + 1)St to the (9, + qb)th IOWS. Also, let = 
diug[kllPa, k21p b].  Then eqn. 18 is equivalent to 

If we define k to be [Wa Wb] and to be the set 
composed of all diagonal matrices of the form A ,  we 
can summarise the above result in the following 
theorem. 
Theorem 2: y(M, '2) = p(U, h), and the size of the 
new problem is smaller than that of the original one by 

It is worth mentioning that in some cases the above 
size reduction step may be repeated. For example, let 
qa = 3, qb = 1, and 

2 1 -3  -5 
1 1 - 2  4 

det{l,,+,, + [wafib]6} = 0 (19) 

4 - (Pa + Pb). 

Yl" ; 1; ;I 
pa = 2 and pb = 1, so the problem size may be reduced 
from 4 to 3, with qa = 2 and q b  = 1. However, it can be 
checked that W, has only rank one, therefore the 
problem size can be further reduced to 2 by repeating 
the procedure. 

d e t ( l +  M A )  = det(I + A T M T )  = de t ( l+  M T A )  (20) 
Hence we can also consider the possibility of problem 
size reduction for p(MT, Q) instead of p(M, a), 
provided the latter is irreducible in size by the above 
procedure. For example, let qa = 3, qb = 1, and 

rl -3  2 -11 

Moreover, note that, because A is diagonal, 

3 -1 -2 3 
2 - 2 0  1 M =  I 

L 5  4 -9 -21 
It is interesting to note that the problem size can be cut 
down from 4 to 3 by using the standard procedure, and 
further ?ut down to 2 by using the same procedure to 

As a final remark, we mention that, in the structured 
singular value computation problems generated in this 
paper, the matrix M does have repeated W blocks, 
which are related to the system and uncertain parame- 
ter structural matrices. If W is rank deficient due to, 
for example, the sparsity of those matrices, the size of 
A4 may be reduced quite significantly, because of the 
multiplicity of W. Thus, the overall structural informa- 
tion are utilised to express the original problem in a 
more compact form. 

p(.(IMT, '2). 

Consider the following uncertain system with output 
feedback: 

x =  [ - l + h + k z  
-1 I,, [l1lblli 2kl 2 - 2k2 

u = w + 3 y  
The closed-loop system is described by 

+ [ ' I 3 k z ] w  

When kl = k2 = 0,  the system eigenvalues are -1 and 
-9.25, which imply nominal asymptotic stability. For 
the closed-loop system, the robust matrix nonsin- 
gularity analysis method of [4] gives the robust stability 
region max,lk,l < l/p(M,) = 0.4847. Thus, we assume 
that the uncertain parameters k l  and k2 are confined in 
this region, and examine the H2 norm performance 
robustness of the system. Based on the formula given 
in Section 3, .no, the squared H2 norm performance 
index of the nominal system, can be calculated to be 
0.7601. If we specify zB = 2, Theorem 1 gives r ,  = 
0.4839. 

Regarding the usefulness of the result developed in 
Section 4, we note that, to determine the above squared 
H2 norm performance robustness region directly, we 
must compute the structured singular value of a 30 x 
30 matrix with respect to uncertainty matrices of the 
form A = diag[klI15, k2115]. The computation is accom- 
plished by using the software [lo], and the cumulative 
floating point operation count is 31 475 897 flops. 
However, with the procedure of Section 4, the matrix 
size involved becomes only 14 x 14, and the uncertainty 
matrices are of the form h = diug[k117, k217]. When the 
same software [lo] is used to do the computation task, 
only 4 038 126 flops are needed, including the opera- 
tions required to make the singular value decomposi- 
tions. This is a reduction of 87%. 

6 Conclusion 

In this paper, we propose an algorithm to find the 
uncertain parameter bound for linear state-space mod- 
els which guarantees the system H2 norm performance 
index is under a prespecified value. The result is 
expressed in terms of structured singular values of 
matrices composed of system and uncertainty structural 
information. To improve computation efficiency, a 
method is developed to reduce the size of composite 
matrices. As there are many more robustness analysis 
problems that can be transformed into the structured 
singular value computation problem considered here [4, 
131, it is believed that the results of this paper not only 
add one more element into the framework but also 
contribute a computation aid to all these problems. 
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