
MARS Performance Evaluation with Different
Interconnection Networks

Feipei Lai ,Lea-Ming Tzeng, Thom-Ling Chang and Tai-Ming Parng

Department of Electrical Engineering & Computer Science
National Taiwan University

Taipei, Taiwan, R. 0. C

Abstract

MARS is a multiprocessor system designed at National
Taiwan University. In this paper, we estimate the
performance of MARS with shared-bus and hierarchical
multiple-bus. The performance estimation was carried out
through queuing models, which were further simplified by
used of modeling. Not only the effects of the shared data
memory accesses but also the interactions among processors
were addressed in our models. We simulated four variants of
shared-bus system to analyze the performance improvement
resulting from write-buffer and interleaved memory under
our cache coherence protocol, Phoenix. Given write-buffer
for ten-processor, the system utilization can be improved
34.8%. Memory interleaving in the ten-processor case can
also boost the original performance by 154.2%. In the
hierarchical multiple-bus system, eight processors are
grouped as a cluster and packet-switching is used to transfer
data. Data consistency is achieved by keeping shared data
noncacheable.An analysis on system performance sensitivity
which varies with parameters is conducted. Based on this, we
further propose several guidelines for the design of cache
coherence protocol.

1. In t roduct ion

Designers of computer system are often interested in
predicting what a proposed machine organization will behave,
before that organization is actually constructed. This
preliminary performance evaluation serves several useful
purposes; for example, the designer can evaluate tradeoffs in
the choices of hardware, evaluate alternative in load
balancing algorithms, and identify potential bottlenecks.

MARS is a multiprocessor system designed at National
Taiwan University. The performance of MARS with two types
of interconnection network-shared bus and and hierarchical
multiple bus- is estimated in this paper.

is a multiprocessing system, which has a
number of processor boards [l] . Each processor board is
linked together via an interconnection network as depicted in
Figure 1. Inside each board, there are CPU chips, i.e., IFU,
(Instruction Fetch Unit) and IPU (Integer Processing Unit)
as well as special chips, FPU (Floating-point Processing
Unit) and LPU (List Processing Unit), dedicated to floating
point and list operations, separate Instruction Cache and Data
Cache along with the Cache Controller and Memory
Management Unit (CCMMU).

MARS

IFU is the buffering and control mechanism between
the instruction cache and the datapath chips (IPU, FPU, LPU).
It is designed to interleave instruction fetch and execution,
and to achieve coordinated operations among IPU, FPU, and
LPU, while IPU [2] retains the integer datapath and some
control parts of a common RlSC CPU [3-51, performing
integer arithmetic, shift, logical operations, and address
calculation for data operands of all datapath chips. LPU [6]
provides hardware primitives for list processing, such as
car, cdr, cons, rplaca (replacea), rplacd (replaced). CCMMU
[A is responsible for the operation of local data cache on each
processor board, address translation, and data cache
coherence protocol among processors. Local data cache will be
as large as 64KB and data will be heuristically prefetched in
the face of pointer or list.

As a tightly coupled multiprocessor system, MARS
must depend on an efficient interconnection network to avoid
performance degradation due to memory sharing. Single
shared bus is the first consideration because of its low
functional complexity and relatively low cost. We survey the
multiprocessor system such as RP3 18-10], CM'[10-11]
and Cedar[lO], and find that each system puts the memory
module into processor or "cluster" to reduce the bus traffic.
Concerning how we manage to reduce bus traffic and thus the
transaction latency, we interleave memory into each
processor board, instead of a lumped global shared memory.
From our analysis that interleaving memory into each
processor could increase performance about 3%-1 O4%,
which is dependent on the number of processors and the other
system parameters. Further more, we try to attach
write-buffer between processor and bus when write-back or
write-to-memory occur, processor can put it to
write-buffer and continue to execute without waiting any
memory access. In section 3, we conclude from simulation
result that adding write-buffer would improve system
performance about 2%-29%.

Since MARS with single shared bus can only support
6-1 6 processors, another interconnection network,i.e.
hierarchical multiple-bus, is proposed. In the hierarchical
multiple-bus system, every 8 processors with sharing
interleaved memory and cache are grouped as a "cluster",
just like Cedar cluster [lo] . In such interconnection
network, even though we connect 64 processors, we can still
keep average processor utilization at about 60%-80Y0.

2. MARS Model

248
TH0309-5/90/oooO/0248$01.00 0 1990 IEEE

0 0 0

I

Fig. 1 The Global System Architecture of MARS

2.1 MARS system Model
In this paper, all the models are described by PAWS -

a queuing model simulation tool [12]. We use hierarchical
modeling technique [13-151 to simplify the system model.
Hierarchical modeling is the process of partitioning a large
model into a number of smaller submodels. Each of these
submodels is evaluated, and the individual solution is
combined to obtain the solution of the original model. In the
general case, there is an arbitrarily defined subsystem:
aggregate, which interacts with the other service centers in
ths network, called collectively the complement or
complementary network. A key step in the hierarchical
approach is to replace the entire aggregate by a FESC (flow
equivalent service centers) that reduplicates its procedures,
thereby. Hierarchical modeling is the process of modeling
a system by using multiple levels of submodels.

Figure 2 shows the MARS system level model. Each is
an FESC of single MARS board. All CPUs are connected to
SYSTEM PROCESSOR to simulate their interactions. Tt, Te and
Ti stand respectively for the mean residence time of data
reference, IFU prefech instruction miss and IFU prefetch data
miss in CPU respectively. These residence time in CPU are
calculated by our own lower model respectively.

2.2 CPU submodel
The lower model of CPU FESC is shown in Figure 3.

CPU submodel contains IFU, OTHERS and IC. IFU is the model
of instruction fetch unit. OTHERS represents the other
element behavior in processor. IC is the instruction cache
model and initialization model. We separate IFU from the
other elements because its abstract behavior is different
from the other elements. IFU can peep out the branch
instruction and fetch the target address before the instruction
is executed. When instructions in the write-buffer of
instruction fetch unit are out of use, IFU will fetch next
sequential block instruction. These prefetch miss signals
will trigger IC to send the next block instructions. INS
represents load or store operation. IFU submodel has two
instruction buffers-BUFFER1 for sequential instruction
stream ; BUFFER2 for target instruction stream. While

'CPVn w trLTIl,T"

T,," : mean intemaltime of data reference in CPUn.

mean internaltime of IFU prefetch instruction miss delay time in CPUn.

Ti." : mean intemaltime of IFU prefetch data miss delay time in CPUn.

CPUn : a FECSplow Equivalent Center Service)

SYSTEM PROCESSOR : a submodel of system , it's function is depenend
al-bhl*.

Fig. 2 System Level Model

BUFFER1 sends an instruction I1 out, if DCB(Delay Compare
and Branch), SCB(Squashab1e Compare and Branch) or JMP
is the next instruction, they will split TARGl or TARG2 at the
same time as I1 departs from buffer. TARGl and TARG2 will
trigger IC submodel to send the next block instruction into
BUFFER2. Conditional branch instruction SCB and DCB will go
into OTHERS submodel after splitting one TARGl. In OTHERS
submodel instructions go through five pipeline stages and
decide whether branch occurs or not. If branch occurs, the
instructions in BUFFER2 are fetched as the next instructions.
BUFFER2 becomes the sequential instruction buffer.
BUFFER1 changes into target instruction buffer and SCB must
squash the instruction following it. On the other hand, i f
branch fails, the instruction in BUFFER2 is discarded, and
new instruction is fetched from BUFFERl. JMP is a special
instruction for OTHERS, it will not be sent to OTHERS but
"absorbed" by IFU directly. JMP splits one TARG2 to trigger
target instruction and then disappears. Target instruction is
put into BUFFER2. The instruction following JMP in
BUFFER1 is discarded. When instructions in buffer are run
out, IFU will split EMPT to IC to get next block instructions.
The parent transaction goes into OTHERS.

OTHERS represents the abstraction behavior of IPU,
LPU or FPU. We do not care the detail functions of the three
models. Each instruction sent from IFU will go through five
pipeline stages (instruction fetching, instruction decoding,
arithmetic operation, memory access and writing back).
Whether conditional branch occurs or not is decided by
probability. According to the statistical data (1 61, the
probability of true condition is 70% and 30% for the false
case.

IC submodel accepts the miss signals of IFU to trigger
next block instructions. We classify the instructions as 7
types: LD, ST, SCB, DCB, JMP, NOP and REM, where REM
represents the other types of instruction unmentioned so far.
For example, all arithmetic instructions are regarded as
REM. The probability of the instruction types is shown in
table 1. These data are taken from MIPS project [17].

2.3 Data Cache (DC) Submodel

249

pie. 9 CPU Functional ~ i a g r ~

Data cache submodel is similar to the one developed in
(181. The reference slream of each processor is viewed as the
merging of two reference streams: the references to shared
blocks with probability shd, and the references to private
blocks. In the DC submodel an explicit representation is
chosen for shared blocks, whereas the presentation of private
block reference is probabilistic. For private block the
reference nature is the same for both the uniprocessor and
the multiprocessor, and it is therefore possible to use
existing uniprocessor cache measurements to reflect actions
resulting from private block references [I 8-20]. All
references to shared blocks in our model include a specific
block number, and actions are taken according to the actual
state of that block. If the request refers to a shared block, the
block number of the reference is determined using a least
recently used (LRU) stack. To meet a shared block request,
the cache is determined according to a table where the
requested block is present. If a cache miss occurs, either for
shared block or for a private block, a block must be ejected to
make room for the new block. The probability for a shared
block to be selected as replacement block is proportional to
the percentage of the shared blocks in the cache. The same
method is used to select a private blocks as a replacement
block. If the selected block is private, it is modified and
written back with probability md. Our cache coherence
protocol is similar to DRAGON [7][18]. The simulation
parameters and range are shown in table 1, which is got from
1181.

3. MARS with Shared Bus

3-1. System Architecture and Operation
multiprocessor system is very popular

because of its low cost and simplicity. There are four variants
of MARS shared-bus system to be compared and analyzed.
They are the shared global memory system with or without
write-buffer and the distributed global memory systems with
or without write-buffer. Architectures of the four variants
are shown in Figure 4.

Our cache coherence protocol is called Phoenix [7]
,which is similar to Dragon except two major differences.
First, in Dragon protocol, a cache will supply data only when
its copy is shared dirty or dirty. In our protocol, data can
also be provided by the idle cache when the block state is
shared clean or valid exclusive. Hence, we have more chances

Shared-bus

WlWlmdd Iblmlmcd

p4G 4 The rulmt S h u e b B u System

receiving data from cache instead of the memory to reduce the
data access time. Second, when write miss occurs, the block
state is marked with shared dirty since we have no idea about
the shared value of the block at this moment. The state might
be changed after the data has been broadcasted.

In the four variants shared-bus system, the type 1
system has the worst performance. The type 2 system which
has interleaved memory can reduce part of the bus traffic
caused by cache misses. How much we can benefit from
interleaving memory module depends on the scheme of
memory allocation. The more interleaving locality we have,
the more improvement we can make. The type 3 system adds a
write-buffer to the type 1 system. The type 4 system add a
write-buffer to the type 2 system. The write-buffer can
reduce the idle time wasted on memory access. When a
processor needs to write data, it puts the instruction into the
write-buffer and then processes the next instruction. The
operation of writing back cache replacement block to memory
is the same as the store operation. In such case, writing back
to memory and broadcasting are managed by the
write-buffer; thus processors are free to process other
tasks.

3-2 The Model of Shared Bus System
Basically, the four variants are alike. We only

describe type 4 model - shared-bus with buffer and
interleaved memory, because the other three can be easily
obtained with minor modifications In this model, we make
some simplification and assumptions.
1 .) Bus arbitration is asynchronous and FCFS.
2.) Synchronizations in parallel programming are not taken
into consideration in the model. From the memory reference
behavior of several parallel applications running under
MACH operation at Stanford University [21], we know the
references to write-shared block have low temporal locality
and references to shared blocks by different processors are
usually interleaved well. Therefore, the assumption is
reasonable.
3.) In type 3 and type 4 system models, buffer size is
assumed to be infinite.

In the type 1 model, all memory accesses reference to
main memory is equivalent to the type 2 model on condition
that the parameter of PMEH (Private Memory Element Hit)
is zero. The same as above, type 3 model is equivalent to type
4 model with PMEH parameter being zero. The type 1 and 2
model are similar to type 3 and 4 model.

3-3 Simulation Result and Analysis

250

Type 1 model is the worst case. Since among 4 type
models for single-bus system , type 1 all reference misses
request the bus. Type 2 model is improved by interleaving
memory module to each processor, and this interleaved
memory modules can filter out some bus requests.
Write-buffer in type 3 and type 4 system can reduce the
processor idle time. For each model, PMEH varies from 0.0 to
0.9 to facilitate us to observe the effect of memory allocation.

The processors utility versus processor number are
shown in Figure 5. From the above data, we can see the
following results:

Type 1 system: When the ratio of data cache hit is
93%, we find the system can support 4 processors at most. If
the ratio of data cache hit increases to 97%, the system can
support up to 5-6 processors without saturating the system
bus.

Type 2 system: From Figure 5.1, we know that the
system consisting of 4-5 processors is reasonable if PMEH is
less than 20%. When PMEH exceeds 50%, the system can
support 8-10 processors reasonably. In Figure 5.2 , HIT is
raised from 93% to 97%. While HIT increases to 97%, the
system can support 8 processor easily even when PMEH is
less than 20%. If PMEH exceeds 50%. the system can support
1 0-1 4 processors.

Type 3 system: When the ratio of data cache hit is
93%, we find the system can support up to 6 processors. If
data cache hit ratio increases to 97%, the system can support
up to 8 processors.

Type 4 system: From Figure 5.3, we know the system
consisting of 7-8 processors is reasonable i f PMEH is less
than 20%. If PMEH exceeds 50%, the system can even
support 14 processors reasonably. In Figure 5.4,HIT is
raised to 97%. While HIT increases to 97%, the system can
support 10-12 processor easily even when PMEH is less
than 20%. If PMEH exceeds 50%, we believe that the system
can support 12-1 6 processors approximately.

Figure 6 shows the performance improvement caused
by interleaved memory. We use utility increment percentage
to observe the effect. We can see the increment percentage is
proportional to processor number and PMEH. Obviously,
increasing processor number causes serious bus contention,
so the effect of interleaving memory module will be more
outstanding. There are some decays caused by the saturation of
system power. When PMEH exceeds So%, the increment
percentage almost increases linearly. The maximum
improvement can reach 154%. In most cases, the
improvement can exceed 30%.

Table 2 shows the increment percentage caused by the
write-buffer. The increment percentage is proportional to
the processor number. When system consists of 10
processors and HIT is 93%, adding write-buffer can increase
system power by 24-36%. If HIT increases to 97%, the
effect of using write-buffer increased only by 8-29%. From
these tables we know that write-buffer is more useful when
HIT is low. The queue length of write-buffer is not long. When
the number of processors reaches 4, the maximum queue
length is 2. When we use 10 processors, the maximum queue
length will reach 6. But the throughput is high and average
queue length is low, that means the average write buffer
queuing time is not long. If we want to support 12-16
processors, the proposed buffer size 4 will be suitable. If the
number of processors is less than 4, the buffer size of one or
two is good enough.

Bm cycle

Memory cycle

Table 1 Simulation Parameter

98%-9Q%

100 M

200 ns

SHD

MD 3Ooh

LDP 27.8%

STP 9.3%

SCBP 2.7%

0. loh-5%

PMEH 0.14.9

JMPP 3.7%

NOPP 2.4%

REMP 45.996

I I DCBP I 8.2%

lo

1 I I I I
LDP probability of load
S?p: probability of store
SCBP probability of squash conditional branch
DCBP probability of delay conditional branch
JMPP probability of jump
NOPP probabllity of no operation
REMP: Probability of the remainder
PMEH: pme memoIy hit ratio
MD: probability of writing back private data is modilied
SHD: probability of reference to shared data

Table 2.1 System Utility Increment Percentage
Caused by Write-Buffer

24.36 26.99 36.73 36.71 30.09 28.54 34.86 29.06

Table 2.2 System Utility Increment Percentage
Caused bv Write-BufTer

sHD=5vo)
0.0 0.1 0.15 0.2 03 0.5 0.7 0.9

I I I I I I

Because most of the data in a process are private, we
conclude that it is not difficult for PMEH to reach 50% or

25 I

PYLH-104

PYLH-SOI

PULE-3 04

PULE-204
PYLH-154

PYLH-104
PYIH-0

5 0 0

! 4 5 0

2 4 0 0
0 = 3 5 0

2 3 0 0

2 5 0

2 0 0

1 5 0

1 0 0

IiIT-eS%
SW-59b
Without buffer.

5 0 F

PYLH-504

PULE-30 4

I - I I I I I 1 .
1 2 4 6 8 1 0 1 2

Number of Processors

Fig 5.1 Total Processor Utility

750

700 / PYLH-gOP
PYT.€l-I 0 4

3 5 0

2 3 0 0
I-

PYIR-504

PULE-304

PYLH-20%
PwLE-15 4
Pl(LH-104

' PYIH-O

y
1 0 0

I I I 1 .

1 2 4 6 8 1 0 1 2

Number of Processors

Fig 5.2 Total Processor Utility

even 80%. If this is the case, MARS with shared-bus system
can support to 12-16 processors reasonably by using
interleaved memory module and write-buffer.

4. MARS with Hierarchical Multiple-Bus

HIT-BS%
SHD-5%
With buffer.

1 0 0

2 0 0

1 5 0

1 0 0

5 0

2 4 6 8 1 0 1 2

Number of Processors

Fig 5.3 Total Processor Utility

HIT-97%
S W - 5 %
Witb buffer.

e 1 2 4 1 0 1 2

Number of Processors

Fig 5.4 Total Processor Utility

4-1. Organizat ion of Hierarch ica l Mul t ip le-Bus
System
The system is shown in Figure 7. Eight MARS

processors are grouped as a cluster, CL. Eight processors
connected by level 0 multiple-bus are shown in Figure 8.1.
Four clusters connected by level 1 multiple-bus, called

252

160 !

160

150

140

130
1 c 120

g 110
L

100
0

160

-
-
-
-
-
-
-
-

/
PYLH-lOb 110

100

enm-so b

PYLE-300

enm-20 b

PYLH-lsI
PYIE-10

20

1 0

2 4 6 8 1 0 1 2

Number of R o c e s w n

Fig 6.1 System Utility Increment Percentage
Caused by Interleaved Memory module.

HIT-SS%
SHD-5%
w l t h o r d ~ e r .

/ PnLH-90*
/

-b

lZO I-

AIT-S7%
8HD-5%
Wth buffer.

I 1- I I I I 1 .
2 4 6 8 1 0 1 2

Number of p m c e s w n

Fig 6.3 System Utility Increment Percentage

130

c 120

100

1

40

30

20

1 0

Caused by Interleaved Memory module.

AIT-S3%
8HD&%
With buffer.

/ PYLH-900

2 4

Number of p m c a w n
Number of p m c e a w n

Fig 6.2 System Utility Increment Percentage
Caused by Interleaved Memory module.

Fig 6.4 System Utility Increment Percentage
Caused by Interleaved Memory module.

group, are shown in Figure 8.2. Four groups connected by
level 2 multiple-bus as a set are shown in Figure 8.3. Input
buffer and output buffer are put between different levels of
the multiple-bus. Communications between processors of the
Same cluster use normal circuit-switch multiple-bus, but

communications between clusters use packet-switch method.
This is somewhat like CM' bus transform method. In
multiprocessor system cache coherence is important, one
solution is to cache only those data structures that cannot
cause inconsistency. This can be done under software control:

253

I

J
Fig. 7 Hierachical Multiple-bus System

the compiler tags data as cacheable or noncacheable. Because
of its simplicity, we use the method to maintain cache
coherence.

4 - 2 . The Mode l of Hierarch ica l Mul t ip le-Bus
System

In this model , the operation of bus arbitration is
assumed asynchronous. Packet-switch size is one word.
Synchronization in parallel programming is not taken into
consideration. The memory cycle is 200ns and bus cycle is
100ns. The time needed to write block into buffer is 100ns.

4-3. Simulation Result and Analysis
There are many factors that affect our system

performance. There are PMEH, the ratio of data cache
hit(HIT) and the ratio of shared data(SHD).

First we range PMEH from 0.2 to 0.8, assuming that
HIT is 93%, 97% and SHD is 5% in order to observe the
effect of memory allocation in system performance. When HIT
is 93%, the effective uniprocessor utilization curve is
plotted in Figure 9.1 and the mean utilization versus number
of processors is shown in Figure 9.2. If PMEH is less than
40%, the system will saturate at 40 processors
approximately. But the mean processor utilization is only

M n M - q M& n

Pig. 8 . 1 CLUSTER1 (CL1) Submodel

call

Fig. 8.2 GROUP1 (Gl) Submodcl

GROUP1 GROUPZ GROUP3 GROUW

Fig. 8.3 SET Submodel

about 13%-19% which is not acceptable. In such situation,
system consisting of 10-1 2 processors is more reasonable.
When PMEH increases to 0.6, system can support 20-24
processors. If PMEH increases to 8O%, system performance
will be good enough even if it supports 64 processors. From
the analysis, we can predict that if data hit ratio is 93% or
lower, SHD is 5% or higher, and PMEH is less than 60%. the

254

55

50

55

50

m 45 45

40

35

30

25

20

15

10

5

I+
m
e,

E a
d
I
.+

40

35

30

25

20

15

10

5

HIT-87% PMEH-0.8 - 8HD-5%

-
PMEH-0.6 -

PmEH-0.4

PMEH-0.2

I I I I I I I I I b -e
1 8 16 24 32 40 48 56 64

Number of Processors

Fig. 9.1 Effective uniprocessors

1 6 18 24 32 40 48 56 64

Number of Processors

Fig. 10.1 Effective uniprocessors

80 t so t
80 L

PmEH-0.8

PMEH-0.8

40 -
30 -
20 -

PMEH-0.6

3 .+
4 .+

5
40

30

20

d

3
PMEH-0.4

PMEH-0.2

lo t lo t
I I I I I I I I I I b
1 8 16 24 32 40 48 56 64

Number of Processors

I I I l I I I I I I b
1 8 16 24 32 40 46 56 64

Number of Processors

Fig. 9.2 Mean Utility Fig. 10.2 MeanUtility

system would not be as good as we expected. Fortunately, it is
rare that HIT is lower than 93%. If data cache hit ratio
increases to 97%, as shown in Figure 10.1, the system is
saturated at 40 processors when PMEH is less than 40%. If
PMEH is less than 40%, system composed of 24 processors is
reasonable. If PMEH is higher than 60%, the system can
support 64 processors at most and the mean processor
utilization keeps in 48.5%-67°/0. When PMEH reaches 80%.
effective uniprocessor utilization is linearly proportional to

the number of processors. From the curves in Figure 10.1
and 10.2, we estimate that the system can support 128
processors and keep mean processor utilization in
60%-65%. As we mentioned before, to make PMEH reach
80% is not impossible.

Because the shared data is noncacheable, increasing
shared data reference frequency will make bus traffic heavy.
Figure 11 shows the data collected when PMEH is 0.4 and SHD
varies from 0 to 20%. In Figure 12, the PMEh is changed to

255

65

60

55

50

45

10

5

-
-
-
-
-

HIT-07%
PMEH-0.4

1 8 16 24 52 40 48 56 64

Number of Processors

Fig. 11.1 Effective uniprocessors

00 I
SHD-O%

SW.1%

S W - S %

SHD-s%

SHD.lO%

HIT-97%
PMEH-0.4

lo t
Fig. 11.2 Meanutility

0.8. Comparing Figure 11.1 and 11.2, we see that the system
can support 32 processors reasonably when SHD is 5%. In
fact, the system saturates at 48-52 processors in this case.
If SHD is larger than WO, the system can support 10-20
processors. In this case, we can say that the system is not
fully utilized. If SHD is less than 3%, the system can support
64 processors easily. From Figure 12.1 and 12.2 we know
that the system can support 64 processors and keep

60

55

50

2 45
0

$ 40
U

55
."
d
3 so

.? 25 3
& 20
w

15

10

5

00

80

70

60

-
50

Y

2 9 40

5 so

3

5 20

10

8HD-S% -
- SHD-5%

HIT-07% - PMEH-0.8

!3HD-l0%

SAD-20%

I I I I I I I I I L
r

1 S 16 24 52 40 48 56 64

Number of Processors

Fig. 12.1 Effective uniprocessors

SHD-0%
6HD-1%

SHD-S%

HIT-07%
P m H - 0 . 8

I I I I I I I I I b
1 8 16 24 SZ 40 46 56 64

Number of Processors

Fig. 12.2 Meanutility

processor utilization between 60% and 80%. Thus we know
that, if PMEH reaches 8O%, the system can get its best
performance. For the system to support more than 64
processors, the system parameters must be chosen carefully.
Under the condition that HIT is 93% and SHD is 5%, PMEH
must exceed 70% to satisfy the requirement. If HIT increases
to 97%, PMEH must be larger than 60% in order to reach the
goal. The main reason is that the private data is the dominant

256

part of a process. In such case, the most part of memory
references can be satisfied by its own memory module. If SHD
exceeds 5%, PMEH needs to be more than 80% to support 64
processors.

The above simulation results tell us that if SHD
exceeds 10%,the system must be improved to satisfy our
request, i.e. 64 processors. Fortunately, the SHD falls
between 0.1% to 5% in most case [18]. IF not, there are two
ways to solve the bottleneck problem. One is to decrease
memory access time, and the other is to reduce the frequency
of bus request. Improving memory speed can be by hardware
technique. What we emphasize is only how to decrease the
frequency of bus requests. In our model, the key factor that
affects the frequency of bus requests is the noncacheability of
shared data. To solve the problem, the cache coherence
protocol can be improved to cache shared, writable data
during periods when they are modified by only one processor
[lo]. In such case, the ratio of shared data cache can be
considerably reduced. This improvement in cache coherence
protocol can make our system more powerful. So there is no
problem for our system to support 64 processors.

5. Conclusion

In this paper, we estimate the performance of MARS
with shared-bus and with hierarchical multiple-bus. We use
hierarchical technique to simplify the system model. In these
models, the effects of memory accesses of shared data are
taken into consideration. The interaction between processors
is managed in these models, too.

In MARS with share-bus, our Phoenix protocol is
designed to manage the cache coherence[20]. We analyzed four
variant types share-bus system. Comparing the performance
of type 1 and type 2 systems, we observe that interleaving
memory to each processor without write-buffer can improve
system performance from 2.75% for two processors system
to 145.1% for 10 processors system. Interleaving memory
to each processor with write-buffer can improve system
performance from 5.14% for 2 processors system to
154.2% for 10 processors system. The more processors
there are, the more improvement in performance can be
achieved by interleaved memory.

The write-buffer can improve system performance by
5%-36%. In most cases the improvement caused by
write-buffer exceeds 10%. The improvement is roughly
proportional to number of processors. If the number of
processors is less than 4, the write-buffer size 2 is good
enough. If the number of processors reaches IO, the
write-buffer maximum queue length will reach 6, but the
mean queue length is low. For this reason, write-buffer size
4 is suitable. Because PMEH is high, our MARS system with
shared-bus can support 12-1 6 processors reasonably.

About hierarchical multiple-bus system, we use
packet-switch to transfer data. The shared data is
noncacheable. This protocol makes SHD and PMEH decisively
influential on system performance. If PMEH is 80%. the
System can almost get its best performance, it can support 64
processors and keep each processor utilization between 60%
and 80%. In such case, it is not difficult for the system to
support 128 processors. To make PMEH reaches 80% is not
impossible, because most memory accesses are the private
data references. However, if SHD exceeds lo%, it is difficult
to support 64 processors. This bottleneck can be released by
putting shared data into cache to reduce data cache miss and

using more efficient cache coherence protocol to get data
consistence.

Reference

[I]G. S. Jang, F. Lai, H. C. Lee, Y. C. Maa, T. M. Parng and J. Y.
Tsai, "MARS-Multiprocessor Architecture Reconciling
Symbolic with Numerical Processing, A CPU Ensemble with
Zero-Delay BranchlJump." Int'l Symposium on VLSI Tech.,
Systems, and Applications, May 1989, pp, 365-370.

[2]G. S. Jang, T. J. Horng, F. Lai and T. M. Parng, " Integer
Processing Unit for MARS, Architecture and Implementation,"
Int'l Symposium on IC Design and Manufacture, Singapore, Sep.
1989, pp. 43-52.

[3]M. G. H. Katevenis, "Reduced Instruction Set Computer
Architectures for VLSI," Ph.D. dissertation, Computer
Science Division , University of California,Berkeley,Oct. 1983.

[4]G. Radin, "The 801 Minicomputer," Proc. SIGARCH/SIGPLAN
Symposium on Architectural Support for Programming
Languages and OS., ACM. Palo Alto, 1982. pp. 39-47.

[5]C.E. Gimarc and V. M. Milutinovic, "A Survey of RISC
Processors and Computers of the mid-1 980s,"Comput.,Sep. 87.

[6]J. Y. Tsai, K. C. Chen and F. Lai, "RISC Architecture for
Lisp with Powerful Environment Control and Fast List
Access," Int'l Symposium on Computer Architecture and
Digital Signal Processing, Hong Kong, Oct. 1989, pp. 165-171.

[7]H. C. Lee and F. Lai. "MARS-Multiprocessor Architecture
Reconciling Symbolic with Numerical Processing," submitted
to Journal of Information Science and Engineering, May. 1989.

[8]G.F. Pfister et al., "The IBM Research Parallel Processor
Prototype (RP3): Introduction and Architecture," Proc.
1985 Int'l Conf. Parallel Processing, pp. 764-771.

19lW.C. BRANTLEY,K.P. MCAULIFFE and J.Weiss. "RP3 Processor-
Memory Element," Proc. 1985 Int'l Conf. Parallel Processing,

[l O]P. Stenstrom, "Reducing Contention in Shared-Memory

[11]K. Hwang, F. A. Briggs, "Computer Architecture and Parallel
Processing," McGraw-Hill, Highstown, New Jersey, 1984.

[12]"PAWS 3.0 - Performance Analysis Workbench System User's
Manua1,"lnformation Research Associates,Austin,Texas, 1 987.

[13]C. H. Sauer, K. M. Chandy, "Computer Systems Performance

[14]E. D. Lazowska, J. Zahorjan, G. S. Graham and K. C. Sevcik,
"Quantative System Performance-computer system analysis
using queuing network models,"Prentice-HalI,lnc. 1984.

[15]A. Thomasian and K. Gargeya, "Speeding up Computer System
Simulations using Hierachrical Modeling,"ACM SIGMETRIC,'86.

[16]J. K. F. Lee and A. J. Smith, "Branch Prediction Strategies
and Branch Target Buffer Design," Comput.,Jan.l984,pp. 6-22.

[17] T. R. Gross, J. L. Hennesy, S. A. Przybylski and C. Rowen,
"Measurement and Evaluation of MIPS Architecture and
Processor"ACM Trans.Comput.,V.6,No.3,Aug.'88,pp. 229-257.

[18]J. Archibald, J. L. Bear, "Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model," ACM
Trans. Computer, Vol. 4, No. 4, Nov. 1986, pp. 273-298.

[19]C. L. Mitchell, "Processor Architecture and Cache
Performance," Technical Report, No. 86-296, Computer
System Laboratory, Departments of Electrical Engineering
and Computer Science, Standford University.

[2O]W. H. Liao. "Cache-Based Memory System," Master
Thesis, Computer Science Div., Dept. of Electrical Engineering,
National Taiwan University, Jun. 1989.

[21]A. Agarwal and A. Gupta, "Memory-Reference
Characteristics of Multiprocessor Applications under MACH,"
Proc. 1987 ACM SlGMETRlCs Conf., 1988, pp. 215-225.

pp. 782-788.

Multiprocessors," Computer, Nov. 1988, pp. 26-37.

Modeling," Prentice-Hall, Inc., Englewood Cliffs, 1981.

251

