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Abstract 

MARS is a multiprocessor system designed at National 
Taiwan University. In this paper, we estimate the 
performance of MARS with shared-bus and hierarchical 
multiple-bus. The performance estimation was carried out 
through queuing models, which were further simplified by 
used of modeling. Not only the effects of the shared data 
memory accesses but also the interactions among processors 
were addressed in our models. We simulated four variants of 
shared-bus system to analyze the performance improvement 
resulting from write-buffer and interleaved memory under 
our cache coherence protocol, Phoenix. Given write-buffer 
for ten-processor, the system utilization can be improved 
34.8%. Memory interleaving in the ten-processor case can 
also boost the original performance by 154.2%. In the 
hierarchical multiple-bus system, eight processors are 
grouped as a cluster and packet-switching is used to transfer 
data. Data consistency is achieved by keeping shared data 
noncacheable.An analysis on system performance sensitivity 
which varies with parameters is conducted. Based on this, we 
further propose several guidelines for the design of cache 
coherence protocol. 

1. In t roduct ion 

Designers of computer system are often interested in 
predicting what a proposed machine organization will behave, 
before that organization is actually constructed. This 
preliminary performance evaluation serves several useful 
purposes; for example, the designer can evaluate tradeoffs in 
the choices of hardware, evaluate alternative in load 
balancing algorithms, and identify potential bottlenecks. 

MARS is a multiprocessor system designed at National 
Taiwan University. The performance of MARS with two types 
of interconnection network-shared bus and and hierarchical 
multiple bus- is estimated in this paper. 

is a multiprocessing system, which has a 
number of processor boards [ l ] .  Each processor board is 
linked together via an interconnection network as depicted in 
Figure 1. Inside each board, there are CPU chips, i.e., IFU, 
(Instruction Fetch Unit) and IPU (Integer Processing Unit) 
as well as special chips, FPU (Floating-point Processing 
Unit) and LPU (List Processing Unit), dedicated to floating 
point and list operations, separate Instruction Cache and Data 
Cache along with the Cache Controller and Memory 
Management Unit (CCMMU). 

MARS 

IFU is the buffering and control mechanism between 
the instruction cache and the datapath chips (IPU, FPU, LPU). 
It is designed to interleave instruction fetch and execution, 
and to achieve coordinated operations among IPU, FPU, and 
LPU, while IPU [2] retains the integer datapath and some 
control parts of a common RlSC CPU [3-51, performing 
integer arithmetic, shift, logical operations, and address 
calculation for data operands of all datapath chips. LPU [6] 
provides hardware primitives for list processing, such as 
car, cdr, cons, rplaca (replacea), rplacd (replaced). CCMMU 
[ A  is responsible for the operation of local data cache on each 
processor board, address translation, and data cache 
coherence protocol among processors. Local data cache will be 
as large as 64KB and data will be heuristically prefetched in 
the face of pointer or list. 

As a tightly coupled multiprocessor system, MARS 
must depend on an efficient interconnection network to avoid 
performance degradation due to memory sharing. Single 
shared bus is the first consideration because of its low 
functional complexity and relatively low cost. We survey the 
multiprocessor system such as RP3 18-10], CM'[10-11] 
and Cedar[lO], and find that each system puts the memory 
module into processor or "cluster" to reduce the bus traffic. 
Concerning how we manage to reduce bus traffic and thus the 
transaction latency, we interleave memory into each 
processor board, instead of a lumped global shared memory. 
From our analysis that interleaving memory into each 
processor could increase performance about 3%-1 O4%, 
which is dependent on the number of processors and the other 
system parameters. Further more, we try to attach 
write-buffer between processor and bus when write-back or 
write-to-memory occur, processor can put it to 
write-buffer and continue to execute without waiting any 
memory access. In section 3, we conclude from simulation 
result that adding write-buffer would improve system 
performance about 2%-29%. 

Since MARS with single shared bus can only support 
6-1 6 processors, another interconnection network,i.e. 
hierarchical multiple-bus, is proposed. In the hierarchical 
multiple-bus system, every 8 processors with sharing 
interleaved memory and cache are grouped as a "cluster", 
just like Cedar cluster [ lo ] .  In such interconnection 
network, even though we connect 64 processors, we can still 
keep average processor utilization at about 60%-80Y0. 

2. MARS Model 
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Fig. 1 The Global System Architecture of MARS 

2.1 MARS system Model 
In this paper, all the models are described by PAWS - 

a queuing model simulation tool [12]. We use hierarchical 
modeling technique [13-151 to simplify the system model. 
Hierarchical modeling is the process of partitioning a large 
model into a number of smaller submodels. Each of these 
submodels is evaluated, and the individual solution is 
combined to obtain the solution of the original model. In the 
general case, there is an arbitrarily defined subsystem: 
aggregate, which interacts with the other service centers in 
ths network, called collectively the complement or 
complementary network. A key step in the hierarchical 
approach is to replace the entire aggregate by a FESC (flow 
equivalent service centers) that reduplicates its procedures, 
thereby. Hierarchical modeling is the process of modeling 
a system by using multiple levels of submodels. 

Figure 2 shows the MARS system level model. Each is 
an FESC of single MARS board. All CPUs are connected to 
SYSTEM PROCESSOR to simulate their interactions. Tt, Te and 
Ti stand respectively for the mean residence time of data 
reference, IFU prefech instruction miss and IFU prefetch data 
miss in CPU respectively. These residence time in CPU are 
calculated by our own lower model respectively. 

2.2 CPU submodel 
The lower model of CPU FESC is shown in Figure 3. 

CPU submodel contains IFU, OTHERS and IC. IFU is the model 
of instruction fetch unit. OTHERS represents the other 
element behavior in processor. IC is the instruction cache 
model and initialization model. We separate IFU from the 
other elements because its abstract behavior is different 
from the other elements. IFU can peep out the branch 
instruction and fetch the target address before the instruction 
is executed. When instructions in the write-buffer of 
instruction fetch unit are out of use, IFU will fetch next 
sequential block instruction. These prefetch miss signals 
will trigger IC to send the next block instructions. INS 
represents load or store operation. IFU submodel has two 
instruction buffers-BUFFER1 for sequential instruction 
stream ; BUFFER2 for target instruction stream. While 

'CPVn w trLTIl,T" 

T,," : mean intemaltime of data reference in CPUn. 

mean internaltime of IFU prefetch instruction miss delay time in CPUn. 

Ti." : mean intemaltime of IFU prefetch data miss delay time in CPUn. 

CPUn : a FECSplow Equivalent Center Service) 

SYSTEM PROCESSOR : a submodel of system , it's function is depenend 
al-bhl*. 

Fig. 2 System Level Model 

BUFFER1 sends an instruction I1 out, if DCB(Delay Compare 
and Branch), SCB(Squashab1e Compare and Branch) or JMP 
is the next instruction, they will split TARGl or TARG2 at the 
same time as I1 departs from buffer. TARGl and TARG2 will 
trigger IC submodel to send the next block instruction into 
BUFFER2. Conditional branch instruction SCB and DCB will go 
into OTHERS submodel after splitting one TARGl. In OTHERS 
submodel instructions go through five pipeline stages and 
decide whether branch occurs or not. If branch occurs, the 
instructions in BUFFER2 are fetched as the next instructions. 
BUFFER2 becomes the sequential instruction buffer. 
BUFFER1 changes into target instruction buffer and SCB must 
squash the instruction following it. On the other hand, i f  
branch fails, the instruction in BUFFER2 is discarded, and 
new instruction is fetched from BUFFERl. JMP is a special 
instruction for OTHERS, it will not be sent to OTHERS but 
"absorbed" by IFU directly. JMP splits one TARG2 to trigger 
target instruction and then disappears. Target instruction is 
put into BUFFER2. The instruction following JMP in 
BUFFER1 is discarded. When instructions in buffer are run 
out, IFU will split EMPT to IC to get next block instructions. 
The parent transaction goes into OTHERS. 

OTHERS represents the abstraction behavior of IPU, 
LPU or FPU. We do not care the detail functions of the three 
models. Each instruction sent from IFU will go through five 
pipeline stages (instruction fetching, instruction decoding, 
arithmetic operation, memory access and writing back). 
Whether conditional branch occurs or not is decided by 
probability. According to the statistical data (1 61, the 
probability of true condition is 70% and 30% for the false 
case. 

IC submodel accepts the miss signals of IFU to trigger 
next block instructions. We classify the instructions as 7 
types: LD, ST, SCB, DCB, JMP, NOP and REM, where REM 
represents the other types of instruction unmentioned so far. 
For example, all arithmetic instructions are regarded as 
REM. The probability of the instruction types is shown in 
table 1. These data are taken from MIPS project [17]. 

2.3 Data Cache (DC) Submodel 
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Data cache submodel is similar to the one developed in 
(181. The reference slream of each processor is viewed as the 
merging of two reference streams: the references to shared 
blocks with probability shd, and the references to private 
blocks. In the DC submodel an explicit representation is 
chosen for shared blocks, whereas the presentation of private 
block reference is probabilistic. For private block the 
reference nature is the same for both the uniprocessor and 
the multiprocessor, and it is therefore possible to use 
existing uniprocessor cache measurements to reflect actions 
resulting from private block references [I 8-20]. All 
references to shared blocks in our model include a specific 
block number, and actions are taken according to the actual 
state of that block. If the request refers to a shared block, the 
block number of the reference is determined using a least 
recently used (LRU) stack. To meet a shared block request, 
the cache is determined according to a table where the 
requested block is present. If a cache miss occurs, either for 
shared block or for a private block, a block must be ejected to 
make room for the new block. The probability for a shared 
block to be selected as replacement block is proportional to 
the percentage of the shared blocks in the cache. The same 
method is used to select a private blocks as a replacement 
block. If the selected block is private, it is modified and 
written back with probability md. Our cache coherence 
protocol is similar to DRAGON [7][18]. The simulation 
parameters and range are shown in table 1, which is got from 
1181. 

3. MARS with Shared Bus 

3-1. System Architecture and Operation 
multiprocessor system is very popular 

because of its low cost and simplicity. There are four variants 
of MARS shared-bus system to be compared and analyzed. 
They are the shared global memory system with or without 
write-buffer and the distributed global memory systems with 
or without write-buffer. Architectures of the four variants 
are shown in Figure 4. 

Our cache coherence protocol is called Phoenix [7] 
,which is similar to Dragon except two major differences. 
First, in Dragon protocol, a cache will supply data only when 
its copy is shared dirty or dirty. In our protocol, data can 
also be provided by the idle cache when the block state is 
shared clean or valid exclusive. Hence, we have more chances 

Shared-bus 

WlWlmdd Iblmlmcd 

p4G 4 The rulmt S h u e b B u  System 

receiving data from cache instead of the memory to reduce the 
data access time. Second, when write miss occurs, the block 
state is marked with shared dirty since we have no idea about 
the shared value of the block at this moment. The state might 
be changed after the data has been broadcasted. 

In the four variants shared-bus system, the type 1 
system has the worst performance. The type 2 system which 
has interleaved memory can reduce part of the bus traffic 
caused by cache misses. How much we can benefit from 
interleaving memory module depends on the scheme of 
memory allocation. The more interleaving locality we have, 
the more improvement we can make. The type 3 system adds a 
write-buffer to the type 1 system. The type 4 system add a 
write-buffer to the type 2 system. The write-buffer can 
reduce the idle time wasted on memory access. When a 
processor needs to write data, it puts the instruction into the 
write-buffer and then processes the next instruction. The 
operation of writing back cache replacement block to memory 
is the same as the store operation. In such case, writing back 
to memory and broadcasting are managed by the 
write-buffer; thus processors are free to process other 
tasks. 

3-2 The Model of Shared Bus System 
Basically, the four variants are alike. We only 

describe type 4 model - shared-bus with buffer and 
interleaved memory, because the other three can be easily 
obtained with minor modifications In this model, we make 
some simplification and assumptions. 
1 .) Bus arbitration is asynchronous and FCFS. 
2.) Synchronizations in parallel programming are not taken 
into consideration in the model. From the memory reference 
behavior of several parallel applications running under 
MACH operation at Stanford University [21], we know the 
references to write-shared block have low temporal locality 
and references to shared blocks by different processors are 
usually interleaved well. Therefore, the assumption is 
reasonable. 
3.) In type 3 and type 4 system models, buffer size is 
assumed to be infinite. 

In the type 1 model, all memory accesses reference to 
main memory is equivalent to the type 2 model on condition 
that the parameter of PMEH (Private Memory Element Hit) 
is zero. The same as above, type 3 model is equivalent to type 
4 model with PMEH parameter being zero. The type 1 and 2 
model are similar to type 3 and 4 model. 

3-3 Simulation Result and Analysis 
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Type 1 model is the worst case. Since among 4 type 
models for single-bus system , type 1 all reference misses 
request the bus. Type 2 model is improved by interleaving 
memory module to each processor, and this interleaved 
memory modules can filter out some bus requests. 
Write-buffer in type 3 and type 4 system can reduce the 
processor idle time. For each model, PMEH varies from 0.0 to 
0.9 to facilitate us to observe the effect of memory allocation. 

The processors utility versus processor number are 
shown in Figure 5. From the above data, we can see the 
following results: 

Type 1 system: When the ratio of data cache hit is 
93%, we find the system can support 4 processors at most. If 
the ratio of data cache hit increases to 97%, the system can 
support up to 5-6 processors without saturating the system 
bus. 

Type 2 system: From Figure 5.1, we know that the 
system consisting of 4-5 processors is reasonable if PMEH is 
less than 20%. When PMEH exceeds 50%, the system can 
support 8-10 processors reasonably. In Figure 5.2 , HIT is 
raised from 93% to 97%. While HIT increases to 97%, the 
system can support 8 processor easily even when PMEH is 
less than 20%. If PMEH exceeds 50%. the system can support 
1 0-1 4 processors. 

Type 3 system: When the ratio of data cache hit is 
93%, we find the system can support up to 6 processors. If 
data cache hit ratio increases to 97%, the system can support 
up to 8 processors. 

Type 4 system: From Figure 5.3, we know the system 
consisting of 7-8 processors is reasonable i f  PMEH is less 
than 20%. If PMEH exceeds 50%, the system can even 
support 14 processors reasonably. In Figure 5.4,HIT is 
raised to 97%. While HIT increases to 97%, the system can 
support 10-12 processor easily even when PMEH is less 
than 20%. If PMEH exceeds 50%, we believe that the system 
can support 12-1 6 processors approximately. 

Figure 6 shows the performance improvement caused 
by interleaved memory. We use utility increment percentage 
to observe the effect. We can see the increment percentage is 
proportional to processor number and PMEH. Obviously, 
increasing processor number causes serious bus contention, 
so the effect of interleaving memory module will be more 
outstanding. There are some decays caused by the saturation of 
system power. When PMEH exceeds So%, the increment 
percentage almost increases linearly. The maximum 
improvement can reach 154%. In most cases, the 
improvement can exceed 30%. 

Table 2 shows the increment percentage caused by the 
write-buffer. The increment percentage is proportional to 
the processor number. When system consists of 10 
processors and HIT is 93%, adding write-buffer can increase 
system power by 24-36%. If HIT increases to 97%, the 
effect of using write-buffer increased only by 8-29%. From 
these tables we know that write-buffer is more useful when 
HIT is low. The queue length of write-buffer is not long. When 
the number of processors reaches 4, the maximum queue 
length is 2. When we use 10 processors, the maximum queue 
length will reach 6. But the throughput is high and average 
queue length is low, that means the average write buffer 
queuing time is not long. If we want to support 12-16 
processors, the proposed buffer size 4 will be suitable. If the 
number of processors is less than 4, the buffer size of one or 
two is good enough. 

Bm cycle 

Memory cycle 

Table 1 Simulation Parameter 

98%-9Q% 

100 M 

200 ns 

SHD 

MD 3Ooh 

LDP 27.8% 

STP 9.3% 

SCBP 2.7% 

0. loh-5% 

PMEH 0.14.9 

JMPP 3.7% 

NOPP 2.4% 

REMP 45.996 

I I DCBP I 8.2% 

lo 

1 I I I I 
LDP probability of load 
S?p: probability of store 
SCBP probability of squash conditional branch 
DCBP probability of delay conditional branch 
JMPP probability of jump 
NOPP probabllity of no operation 
REMP: Probability of the remainder 
PMEH: pme memoIy hit ratio 
MD: probability of writing back private data is modilied 
SHD: probability of reference to shared data 

Table 2.1 System Utility Increment Percentage 
Caused by Write-Buffer 

24.36 26.99 36.73 36.71 30.09 28.54 34.86 29.06 

Table 2.2 System Utility Increment Percentage 
Caused bv Write-BufTer 

sHD=5vo) 
0.0 0.1 0.15 0.2 03 0.5 0.7 0.9 

I I I I I I 

Because most of the data in a process are private, we 
conclude that it is not difficult for PMEH to reach 50% or 
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even 80%. If this is the case, MARS with shared-bus system 
can support to 12-16 processors reasonably by using 
interleaved memory module and write-buffer. 

4. MARS with Hierarchical Multiple-Bus 

HIT-BS% 
SHD-5% 
With buffer. 

1 0 0  

2 0 0  

1 5 0  

1 0 0  

5 0  

2 4  6 8 1 0  1 2  

Number of Processors 

Fig 5.3 Total Processor Utility 

HIT-97% 
S W - 5 %  
Witb buffer. 

e 1 2 4  1 0  1 2  

Number of Processors 

Fig 5.4 Total Processor Utility 

4-1. Organizat ion of Hierarch ica l  Mul t ip le-Bus 
System 
The system is shown in Figure 7. Eight MARS 

processors are grouped as a cluster, CL. Eight processors 
connected by level 0 multiple-bus are shown in Figure 8.1. 
Four clusters connected by level 1 multiple-bus, called 
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Fig 6.4 System Utility Increment Percentage 
Caused by Interleaved Memory module. 

group, are shown in Figure 8.2. Four groups connected by 
level 2 multiple-bus as a set are shown in Figure 8.3. Input 
buffer and output buffer are put between different levels of 
the multiple-bus. Communications between processors of the 
Same cluster use normal circuit-switch multiple-bus, but 

communications between clusters use packet-switch method. 
This is somewhat like CM' bus transform method. In 
multiprocessor system cache coherence is important, one 
solution is to cache only those data structures that cannot 
cause inconsistency. This can be done under software control: 
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Fig. 7 Hierachical Multiple-bus System 

the compiler tags data as cacheable or noncacheable. Because 
of its simplicity, we use the method to maintain cache 
coherence. 

4 - 2 .  The Mode l  of Hierarch ica l  Mul t ip le-Bus 
System 

In this model , the operation of bus arbitration is 
assumed asynchronous. Packet-switch size is one word. 
Synchronization in parallel programming is not taken into 
consideration. The memory cycle is 200ns and bus cycle is 
100ns. The time needed to write block into buffer is 100ns. 

4-3. Simulation Result and Analysis 
There are many factors that affect our system 

performance. There are PMEH, the ratio of data cache 
hit(HIT) and the ratio of shared data(SHD). 

First we range PMEH from 0.2 to 0.8, assuming that 
HIT is 93%, 97% and SHD is 5% in order to observe the 
effect of memory allocation in system performance. When HIT 
is 93%, the effective uniprocessor utilization curve is 
plotted in Figure 9.1 and the mean utilization versus number 
of processors is shown in Figure 9.2. If PMEH is less than 
40%, the system will saturate at 40 processors 
approximately. But the mean processor utilization is only 

M n  M - q  M& n 

Pig. 8 . 1  CLUSTER1 (CL1) Submodel 

call 

Fig. 8.2 GROUP1 (Gl)  Submodcl 

GROUP1 GROUPZ GROUP3 GROUW 

Fig. 8.3 SET Submodel 

about 13%-19% which is not acceptable. In such situation, 
system consisting of 10-1 2 processors is more reasonable. 
When PMEH increases to 0.6, system can support 20-24 
processors. If PMEH increases to 8O%, system performance 
will be good enough even if it supports 64 processors. From 
the analysis, we can predict that if data hit ratio is 93% or 
lower, SHD is 5% or higher, and PMEH is less than 60%. the 
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system would not be as good as we expected. Fortunately, it is 
rare that HIT is lower than 93%. If data cache hit ratio 
increases to 97%, as shown in Figure 10.1, the system is 
saturated at 40 processors when PMEH is less than 40%. If 
PMEH is less than 40%, system composed of 24 processors is 
reasonable. If PMEH is higher than 60%, the system can 
support 64 processors at most and the mean processor 
utilization keeps in 48.5%-67°/0. When PMEH reaches 80%. 
effective uniprocessor utilization is linearly proportional to 

the number of processors. From the curves in Figure 10.1 
and 10.2, we estimate that the system can support 128 
processors and keep mean processor utilization in 
60%-65%. As we mentioned before, to make PMEH reach 
80% is not impossible. 

Because the shared data is noncacheable, increasing 
shared data reference frequency will make bus traffic heavy. 
Figure 11 shows the data collected when PMEH is 0.4 and SHD 
varies from 0 to 20%. In Figure 12, the PMEh is changed to 
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0.8. Comparing Figure 11.1 and 11.2, we see that the system 
can support 32 processors reasonably when SHD is 5%. In 
fact, the system saturates at 48-52 processors in this case. 
If SHD is larger than WO, the system can support 10-20 
processors. In this case, we can say that the system is not 
fully utilized. If SHD is less than 3%, the system can support 
64 processors easily. From Figure 12.1 and 12.2 we know 
that the system can support 64 processors and keep 
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processor utilization between 60% and 80%. Thus we know 
that, if PMEH reaches 8O%, the system can get its best 
performance. For the system to support more than 64 
processors, the system parameters must be chosen carefully. 
Under the condition that HIT is 93% and SHD is 5%, PMEH 
must exceed 70% to satisfy the requirement. If HIT increases 
to 97%, PMEH must be larger than 60% in order to reach the 
goal. The main reason is that the private data is the dominant 
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part of a process. In such case, the most part of memory 
references can be satisfied by its own memory module. If SHD 
exceeds 5%, PMEH needs to be more than 80% to support 64 
processors. 

The above simulation results tell us that if SHD 
exceeds 10%,the system must be improved to satisfy our 
request, i.e. 64 processors. Fortunately, the SHD falls 
between 0.1% to 5% in most case [18]. IF not, there are two 
ways to solve the bottleneck problem. One is to decrease 
memory access time, and the other is to reduce the frequency 
of bus request. Improving memory speed can be by hardware 
technique. What we emphasize is only how to decrease the 
frequency of bus requests. In our model, the key factor that 
affects the frequency of bus requests is the noncacheability of 
shared data. To solve the problem, the cache coherence 
protocol can be improved to cache shared, writable data 
during periods when they are modified by only one processor 
[lo]. In such case, the ratio of shared data cache can be 
considerably reduced. This improvement in cache coherence 
protocol can make our system more powerful. So there is no 
problem for our system to support 64 processors. 

5. Conclusion 

In this paper, we estimate the performance of MARS 
with shared-bus and with hierarchical multiple-bus. We use 
hierarchical technique to simplify the system model. In these 
models, the effects of memory accesses of shared data are 
taken into consideration. The interaction between processors 
is managed in these models, too. 

In MARS with share-bus, our Phoenix protocol is 
designed to manage the cache coherence[20]. We analyzed four 
variant types share-bus system. Comparing the performance 
of type 1 and type 2 systems, we observe that interleaving 
memory to each processor without write-buffer can improve 
system performance from 2.75% for two processors system 
to 145.1% for 10 processors system. Interleaving memory 
to each processor with write-buffer can improve system 
performance from 5.14% for 2 processors system to 
154.2% for 10 processors system. The more processors 
there are, the more improvement in performance can be 
achieved by interleaved memory. 

The write-buffer can improve system performance by 
5%-36%. In most cases the improvement caused by 
write-buffer exceeds 10%. The improvement is roughly 
proportional to number of processors. If the number of 
processors is less than 4, the write-buffer size 2 is good 
enough. If the number of processors reaches IO, the 
write-buffer maximum queue length will reach 6, but the 
mean queue length is low. For this reason, write-buffer size 
4 is suitable. Because PMEH is high, our MARS system with 
shared-bus can support 12-1 6 processors reasonably. 

About hierarchical multiple-bus system, we use 
packet-switch to transfer data. The shared data is 
noncacheable. This protocol makes SHD and PMEH decisively 
influential on system performance. If PMEH is 80%. the 
System can almost get its best performance, it can support 64 
processors and keep each processor utilization between 60% 
and 80%. In such case, it is not difficult for the system to 
support 128 processors. To make PMEH reaches 80% is not 
impossible, because most memory accesses are the private 
data references. However, if SHD exceeds lo%, it is difficult 
to support 64 processors. This bottleneck can be released by 
putting shared data into cache to reduce data cache miss and 

using more efficient cache coherence protocol to get data 
consistence. 
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