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Abstract: The authors deal with the problem of 
minimax recursive digital filter design with a 
lattice structure for the denominator. The design 
problem is formulated so that the coefficients for 
the numerator and denominator of a recursive 
filter can be found by solving the best linear 
complex Chebyshev approximation (LCCA). A 
design technique based on the weighted least- 
squares algorithm previously proposed by one of 
the authors is then developed for solving the 
resulting LCCA problem. During the design 
process, this technique finds the tap coefficients 
for the numerator and the reflection coefficients 
for the denominator simultaneously. The stability 
of the designed recursive filter is ensured by 
incorporating an efficient stabilisation procedure 
to make all of the reflection coefficient values fall 
between -1 and +l.  Computer simulations show 
that the proposed technique provides better 
design results than existing techniques. 

1 Introduction 

In many applications, such as in the design of digital 
phase networks and of minimum phase systems, digital 
filters with constant group delay phase other than 
exactly linear phase are usually required. Therefore, a 
complex approximation problem arises when we design 
a filter to approximate arbitrary magnitude, phase or 
group delay. 

Several algorithms have been proposed to solve the 
problem of designing recursive filters with arbitrary 
magnitude and phase responses optimal in the minimax 
sense. Because the design problem is basically a 
rational Chebjishev approximation problem in the 
complex domain, it is not easy to solve this approxima- 
tion problem and hence there are no systematic 
approaches for finding the best approximation solution 
in the literature. In general, researchers resort to a local 
best approximation (LBA) solution instead of the glo- 
bal best approximation (GBA) solution for this consid- 
ered problem. Linear programning (LP) based 
algorithms have been used in [I] for dealing with this 
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design problem. The objective function resulted from 
the formulation employs the frequency response of the 
denominator of the filter as the weighting function. 
Moreover, a very strict stability constraint is also uti- 
lised to ensure the stability of the designed recursive fil- 
ter. This technique cannot provide satisfactory design 
results. A multiple criterion optimisation technique has 
been presented in [2] for this design. It utilised the 
sequential quadratic programming algorithm of [3] to 
solve the resulting optimisation problem. In general, 
the capabilities of this design technique are limited 
when recursive fiIters with higher order are required. A 
recent technique is proposed by [4]. However, it 
employs a linear complex Chebjishev approximation 
(LCCA) tool presented in [5] to modify the original 
Ellacott-Williams (EW) algorithm of [6]. An LP based 
method is used to solve the resulting LCCA problem. 
This technique does not guarantee that the best 
approximation solution can be obtained even in the 
local optimal sense. Moreover, it is not an efficient way 
to use any LP based algorithms to solve the resulting 
LCCA problem because huge computational load is 
inevitably required. 

In this paper, we present a technique for designing a 
recursive filter with a lattice structure for the denomi- 
nator in the minimax sense. The related design problem 
is first formulated so that the coefficients for the 
numerator and the reflection coefficients for the 
denominator of a recursive filter can be found by solv- 
ing a problem of the best linear complex Chebphev 
approximation (LCCA). To efficiently solve the result- 
ing LCCA problem induced by the minimax design of 
recursive digital filters with arbitrary magnitude and 
phase responses, a design technique based on the 
weighted least squares (WLS) algorithm of [7] is then 
developed. During the design process, this technique 
finds the tap coefficients for the numerator and the 
reflection coefficients for the denominator simultane- 
ously without resorting to any LP based algorithm. It 
ensures the stability of the designed recursive filter by 
incorporating an efficient stabilisation procedure to 
make the magnitude of each reflection coefficient 
within -1 and + 1. Computer simulations show that the 
proposed technique can provide a more satisfactory 
design than the existing techniques for each design 
example. 

2 

Let the transfer function of the recursive digital filter 
with order MIN (i.e. A4 zeros and N poles) be given by 
H(z) = A(z)/Bdz) ,  where A(z) is an Mth-order polyno- 

Formulation of the design problem 
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mial with tap coefficient vector A = [ao, al, ..., a,]r, 
B ~ z )  is an Nth-order FIR lattice filter with reflection 
coefficient vector K = [kl, k2, ..., kNIT. The superscript 
T denotes the transpose operation. Fig. 1 shows the 
system structure for B d z )  whdch can be obtained from 
the following recursive formula [8]: 

Bo(.) = Qo(z)  = 1 

Bn(z)  = Bn-i(z) + knz- 'Qn-i(~) (1) 
&n(z )  kn&-i(z) -I- .f'Qn-i(z) 

The design problem is to find the tap and reflection 
coefficients {a,, k,} such that the stable filter H(z) has 
a frequency response H ( P )  optimally approximating a 
desired complex frequency response D(dW) in the mini- 
max sense over a set S which consists of the considered 
frequency regions. That is, we want to find a polyno- 
mial A(z) and a lattice system B ~ z )  such that the fol- 
lowing weighted Chebyshev error, 

IlW, ) - B N ( e 3 W  A ( e 3 W  w, ( e 3 w ) ( D ( e 3 w ) - B N  A ( e 3 W  (.'Y )))tdUGS 

(2) 
is minimised, where W,(du) is a non-negative weighting 
function defined on S for putting relative weights 
between different frequency bands. eqn. 2 reveals that 
the design problem is a rational Chebyshev 
approximation problem in the complex domain like 
that considered in [l]. To find the solution numerically 
requires evaluation of the error of eqn. 2 on a set of 
discrete frequency points. Let Sd = {wl,  w2, ..., wL) be a 
dense grid of frequency points linearly distributed over 
S with > w, for 0 < i < L - 1. Then, we consider 
the optimisation problem of eqn. 2 on Sd and rewrite 
eqn. 2 as follows: 

minimise max W, ( e J w * )  (D ( eJws )  - BN A ( e J w t )  (e3w. )  ) la,, E Sd 

(3) 
Eqn. 3 represents a rational complex Chebphev 
approximation (RCCA) problem. In the literature, 
there are no systematic approaches developed for find- 
ing the GBA solution for eqn. 3. Usually, design tech- 
niques are developed based on finding an LBA solution 
instead of the GBA solution. To achieve this design 
task, we first present an efficient method for solving an 
LCCA problem in the following Section. 

Fig. 1 Lattice structure for an Nth-order FIR lattice filter 

3 
problems 

Let X be an L x K complex-valued matrix with L > K 
and d be an L x 1 complex-valued vector. An LCCA 
problem can be formulated as follows: 

An efficient method for solving LCCA 

minimise 1 Id - Xal 1 (4) 
where a is a real-valued parameter vector of size K x 1. 
Typically, finding the optimal solution for eqn. 4 
requires solving the Chebyshev optimisation of an over- 
determined system of linear complex equations. Based 
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on the WLS algorithm of [7], the solution for the opti- 
misation problem of eqn. 4 can be found by solving the 
following minimisation problem: 

minimise J = (Xa - d)H W (Xa - d) (5) 
where the diagonal matrix W denotes the least-squares 
error weighting matrix. The superscript H denotes the 
complex conjugate transpose. In [7], an efficient sys- 
tematic approach was presented for adjusting W itera- 
tively during the minimisation process to obtain the 
Chebyshev solution. It is easy to show that the optimal 
parameter a which minimises eqn. 5 is given by 

a = (xH WX) xH ~d (6) 
However, eqn. 6 cannot guarantee that the resulting a 
is a real-valued vector. To obtain a real-valued param- 
eter vector a which is still a WLS solution, we consider 
the following minimisation problem: 
minimise J I  =(XI a-d,) W (XI a-d,)+(X, a-d,) * W (X, a-d, ) 

(7)  
where X, and X, are the real and imaginary parts of X, 
respectively. d, and d, are the real and imaginary parts 
of d, respectively. Again, the optimal solution for 
eqn. 7 can be found easily as follows: 

a = (XTWX, + X?WX,)- l  (XTWd, + XFWd.) 

For many applications, the matrix X r W X ,  + X,%X, 
in eqn. 8 is usually a Toeplitz or a block Toeplitz 
matrix. Therefore, only a few elements of this matrix 
need to be computed and eqn. 8 can be performed 
using an efficient algorithm as shown in [9]. Hence the 
required computational load can be reduced 
significantly. 

4 Proposed design technique 

4. I Initial numerator and denominator 
Here, we consider the original design problem shown in 
eqn. 3. The proposed design technique is based on an 
iterative process to find the optimal numerator and 
denominator for eqn. 3. At the initial step, suppose 
that we have chosen an initial guess with polynomial 
F(z) and coefficients { l,fl, f2, . . . , fH} through the use of 
the balanced model reduction algorithm presented in 
[lo] for the denominator. The initial lattice system 
BNo(z) with reflection coefficients {kI0, k20, ..., kHo} cor- 
responding to F(z) can be found since there exists a 
one-to-one correspondence between (1, fl, f2, ..., fN} 
and {kIo ,  k?, ..., kNo) [11]. From eqn. 3, the best solu- 
tion for the corresponding numerator Ao(z) can be 
obtained by solving the following LCCA problem, 

(8) 

Let X1 be a complex L x (M + 1) matrix with its (m, 
n)th element given by 

l<m<L, l<n<M+l  (10) ( e - J w ,  (n-1)  
X 1 ( m , n ) = W ~ ( e J W m )  Bo ( e 3 w n )  

N 

and d' be a complex L x 1 vector with its mth element 
given by 

(11) 
then the optimal coefficient vector ai = [a$, aI0,  ..., 
aMolT of Ao(z) for eqn. 10 can be found by minimising 
IIX'a' ~ d'll. This minimisation problem can be solved 

d h  = W, (eJWm)  D (e3'",) 1 5 m 5 L 
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by utilising the WLS algorithm. After finding the 
appropriate initial guess P ( z )  = Ao(z)iBNo(z), we 
present an iterative procedure step by step for comput- 
ing A(z) and Bdz)  during the design process. 

4.2 Iterative procedure (Procedure I) 
Step 1: At the pth iteration, the Hessian matrix H = [V 
Hp(e'"9] is computed, where V represents the gradient 
operator [dldk,, dldk,, ..., dldk,, dlda,,, dida,, ..., dlda,] 
and i = 1, 2, ..., L. We have derived the following equa- 
tions for computing H: 
--& a H P ( d w ) -  ( & ) = m e , m = O J  A P ( e J w  ,...,M 

a H P ( e 3 w ) = L  (-) = - A P ( e J W )  "BC !e lw)  ,n=1,2, ,N 

( B K ( e 3 W ) ) 2  a 
aa, a b ,  B ; ( ~ J ~  

(12) 
Step 2: Use a linearisation scheme to approximate the 
frequency response error Ep(e'") = D ( P )  - Hp(e'") due 
to a perturbation in the coefficient vectors in the linear 
subspace spanned by the Hessian matrix H. That is, the 
approximation error Eap(dw) = D(d") - @'(e'") - Hv is 
computed, where the vector v = [AK, AA] = [Ak,, Ak2, 
..., AkN, Aao, Aut, ..., AaMIT contains the increments of 
the independent coefficients to be found. 
Step 3: Solve the following optimisation problem by 
utilising the WLS algorithm, 

minimise IlW, (eJwt)  ( D  (eJWz)  - H P  (eJwt )  - Hv)II (13) 

to obtain the increment coefficient vector v. 
Step 4: Perform a line search by using the Nelder- 
Meade simplex algorithm of [12] to find the best step 
size t to update the numerator and denominator of 
Hp(z) such that the following cost function is mini- 
mised: 

(14) 
subject to the constraint of maxlk,!' + tAkjl < k,,, 
where kmax denotes the preset maximal absolute value 
and must be < 1 for the reflection coefficients in order 
to ensure the stability of the designed recursive digital 
filter. kj' represents the jth reflection coefficient 
obtained at the pth iteration. The stability constraint of 
k,,, < 1 in general results in that the optimal t which 
offers a stable filter may not equal the optimal t 
obtained by performing the line search without the sta- 
bility constraint. Further, in eqn. 14, we point out that 
the increment polynomial 6A(z) for the numerator has 
the coefficient vector AA, while the updated denomina- 
tor B$+'(z) has the reflection coefficient vector given 
by K + tAK. 
Step 5: To alleviate the effect of the stability constraint 
on the optimality of the designed recursive filter, we 
recompute the optimal numerator for the updated 
denominator BNp+'(z) by using the WLS algorithm to 
solve the following optimisation problem: 

Step 6: Set the updated numerator Ap''(z) equal to 
A(Z) obtained from eqn. 15 and compute the corre- 
sponding frequency response error E""(.'") = D(dW)- 
Hp+'(d"). 
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Step 7: Compute the ratio (11 W r ( d ~ ~ ) E p + l ( d m ~ ) ~ ~  - 

( 1  W,.(d"i)B'(e'"i)~~)i~~ Wr(e'"i)D(d'"i)ll. If this ratio is less 
than a preset positive number K ,  then the design proce- 
dure is terminated. Otherwise, we continue this proce- 
dure and go to step 1. 
Remarks: There are two situations where the Hessian 
matrix H may degenerate. 
Case I :  The columns of H are not linearly independent. 
Then the optimal solution for eqn. 13 will not be 
unique. To find an appropriate optimal solution, we 
construct a matrix G by choosing the independent col- 
umns from H and a vector U by choosing the compo- 
nents of v corresponding to the independent columns. 
Then use G and U to replace H and v of eqn. 13. 
Case 2: At the pth iteration, the ith reflection coeffi- 
cient kj may have the absolute value equal to kmax. To 
tackle this difficulty, we construct a vector U by elimi- 
nating Akj of the vector v and a matrix G by eliminat- 
ing the column of H corresponding to Akj Then we use 
the G and U to replace H and v of eqn. 13. 

5 Design examples 

In this Section, several computer simulations of design- 
ing recursive filters with arbitrary magnitude and phase 
responses are presented for illustrating the effectiveness 
of the proposed technique. All the simulations were 
performed on a 80486 PC using a MATLAB program- 
ming language. The value of K used for terminating 
procedure 1 was set to For each of the design 
examples, the WLS algorithm was used for solving the 
Chebyshev solution of the resulting LCCA approxima- 
tion problem and the value of k,,, was set to 0.98. The 
number L of frequency grid points used during the 
design process was set to 300. Moreover, the weighting 
function Wr(.'"i)) was set to 1 in both the passband 
and stopband for examples 1 and 3, and was set to 1 
and 3 in the passband and stopband, respectively, for 
example 2. 
Example 1. A lowpass recursive filter of order 4/4: The 
specifications for this design are exactly the same as 
those of example 1 presented in [4]. The passband and 
stopband are set to the ranges [0, 0.11 and [0.2, 0.51, 
respectively. The desired group delay is set to 5. Some 
significant design results obtained by utilising the pro- 
posed technique are listed in Table 1 .  For comparison, 
we also present the design results of using the tech- 
nique of [4]. Table 2 shows the filter coefficients, while 
Figs. 2 4  plot the magnitude, group delay and approxi- 
mation error responses of the filter designed by using 
the proposed technique. We note from Table 1 that the 
proposed technique outperforms the technique of [4] in 
this case. 

Table 1: Performance comparison for example 1 

Proposed Algorithm 
algorithm of 141 

~ ~ 

IIR filter order 414 414 

Chebyshev error in passband 0.0215 0.0420 

Chebyshev error in stopband 0.0215 0.0420 
Chebyshev error in stopband, dB -33.35 -27.50 

Range of passband group delay 4.80-5.57 4.65-6.34 

delay 
Max. variation of passband group 0.57 1.34 
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ned filter coefficients for example 1 

\ L- , - ,  

0 -2.4874193 x IO-* 
1 4.6554285 x IO-’ -8.4567002 x IO-’ 
2 3.8891673 x 8.7923704 x IO-’ 

3 1.7479002 x IO-’ -7.8745132 x IO-’ 
4 4.1137105 x 3.9254935 x IO-’ 

-601 
0 0.1 0.2 0.3 0.L 0 . 5  

Magnitude response of designedJilter for example I 
normalised frequency 

Fig. 2 

normalised frequency 
Fig.3 Group delay response for example I 

0 . 0 2 5 ~  

I 
2 0.3 0.4 0.5 

normalised frequency 
Fig.4 Approximation error for example 1 

Example 2. A lowpass recursive filter of order 6/7: For 
this design, the specifications are exactly the same as 
those of example 2 presented in [4]. The passband and 
stopband are set to the ranges [0, 0.11 and [0.2, 0.51, 
respectively. The desired group delay is set to 10. Some 
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significant design results obtained by utilising the pro- 
posed technique are listed in Table 3. Table 4 shows 
the filter coefficients, while Fig. 3 plots the magnitude, 
group delay and approximation error responses of the 
designed filter. For comparison, the significant filter 
performances of using the technique presented in [4] 
are also shown in Table 3. Again, we note from 
Table 3 that the proposed technique outperforms the 
technique of 141. 

-70‘ 
0 0.1 0.2 0 . 3  0.L ( 5  

Magnitude frequency response of designed filter for example 2 
normalised frequency 

Fig. 5 

3 

e 7  
17) i: 

I 

I 4 \ i ’ 
I ,  I 

0 .I 0 2  0.3 0.L  0.5 
5L 
0 

Group delay response for example 2 
normalised frequency 

Fig.6 

normalised frequency 
Fig.7 Approximation error for example 2 

Example 3. A wideband linear-phase lowpass recursive 
filter of order 18/18: For this case, the chosen design 
specifications are exactly the same as those of example 
6.1 presented in [13]. The passband and stopband are 
set to the ranges [0, 0.251 and C0.3, 0.51, respectively. 
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Table 3: Performance comparison for example 2 

1 

Proposed Algorithm 
algorithm of [41 

IIR filter order 6/7 6/7 
Chebyshev error in passband 0.0081 0.0155 
Chebyshev error in stopband 0.0026 0.0052 
Chebyshev error in stopband, dB -51.6 -45.7 
Range of passband group delay 9.86-10.11 9.93-10.8 
Max. variation of passband group 0.14 0.8 
delay 

Table 4: Designed filter coefficients for example 2 

a, 

3.8657742 x IO3 
-1.1035528 x IO-’ 
1.5855231 x IO-’ 

-2.4540573 x IO‘* 
3.0113662 x IO-’ 
-2.0369372 x IO-’ 
1,5996173 x 

-8.7846678 x IO-’ 
8.8107956 x IO-’ 
-8.9103741 x IO-’ 
8.8192088 x IO-’ 
-8.3376837 x IO-’ 
6.4279357 x IO-’ 
-2.3076139 x IO-’ 

Table 5: Performance comparison for example 3 

Proposed Algorithm 
algorithm of [I31 

IIR filter order 1811 8 1811 8 
Chebyshev error in passband 0.0027 0.0405 
Chebyshev error in stopband 0.0027 0.0097 
Chebyshev error in stopband, dB -51.41 -40.24 
Range of passband group delay 21.93-22.05 21.74-22.19 
Max. variation of passband group 0.07 0.26 
delay 

Table 6: Designed filter coefficients for example 3 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 

-1.4179658 x IO“ 
-8.9369242 x 1 O4 
7.61 11604 x IO4 
-2.6017086 x IO-’ 
5.7879648 x IOL2 
-9.6967825 x IO-’ 
1.3348250 x IO-’ 

-1.6271720 x IO-’ 
1.8723776 x IO-’ 
-2.1098236 x IO-’ 
2.3590591 x IO-’ 
-2.6525684 x IO-’ 
3.0120905 x IO-’ 
-3.3 1709 10 x IO-’ 
3.2903791 x IO-’ 
-2.7820673 x IO-’ 
2.0197693 x IO-’ 
-1.3308297 x IO-’ 
6.7461232 x IO-* 

-7.7943336 x IO-’ 
6.3921350 x IO-’ 
-5.8972093 x IO-’ 
6.0054235 x IO-’ 
-6.2268220 x IO-’ 
6.3505035 x IO-’ 
-6.3761634 x IO-’ 
6.3439276 x IO-’ 
-6.2774302 x IO-’ 
6.1804955 x IO-’ 
-6.0394533 x IO-’ 
5.8174536 x IO-’ 
-5.4369487 x IO-’ 
4.761 6400 x IO-’ 
-3.6507023 x IO-’ 
2.2013488 x IO-’ 
-9.0921627 x IO-’ 
2.0165519 x IO3 

The passband possesses a constant group delay equal 
to 22. The significant design results obtained by utilis- 
ing the proposed technique are presented in Table 5. 
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Table 6 shows the filter coefficients, while Fig. 4 plots 
the magnitude, group delay and approximation error 
responses of the designed filter. For comparison, the 
design results of using the technique of 1131 are also 
shown in Table 5. We note that the filter designed by 
the proposed technique possesses better performance 
than that designed by the technique of [ 131. 

-1 0 - m 
2 -20- 
c 0 
2 -30- 
E 
4 -10- 

3 -50- 
r 

E 
-60- 

- 7 o - - A  
0 0.1 0.2 0.3 0. L 0. 5 

normalised frequency 
Magniludedefrequency response of des@nedjlterfor example 3 Fig. 8 

L l  

10 I 2 l  0 0 .I 0.2 0.3 0.L 0.5 

normalised frequency 
Fig.9 Group delay response for example 3 

normalised frequency 
Fig. 10 Approximation error for example 3 

6 Conclusion 

This paper has presented an efficient technique based 
on a WLS algorithm for the minimax design of recur- 
sive digital filters with a lattice denominator. At each 
iteration of the proposed technique, the core work 
includes appropriately adjusting the tap coefficients of 
the numerator and the reflection coefficients for the 
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denominator to reduce the resulting Chebyshev error 
and keep the designed filter stable. For the first task, 
the WLS algorithm presented in [7] is utilised to solve 
the required linear complex Chebyshev approximation 
(LCCA) problems. For the second task, the stability of 
the designed recursive filter is ensured by incorporating 
an efficient stabilisation procedure to make all of the 
reflection coefficient values fall between -1 and + l .  
Computer simulations have shown that the proposed 
technique provides more satisfactory design results 
than existing design techniques. 
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