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ABSTRACT

An autoregressive spectral estimation method
is developed to reduce the noise effect in prediction
coefficient estimation. This method solves the pre-
diction coefficients from a generalized Yule-Walker
equation which is formed by the data and its gener-
alized autocorrelation sequence. This method pro-
vides several control parameters for the spectral
estimator to combat the unmodeled additive noise
in the linear least square sense. Through the effi-
cient use of information by this method, data size
will be directly helpful in noise suppression.

INTRODUCTION

Autoregressive power spectral density estima-
tion (AR PSD) is a well known high resolution
spectral analysis tecnique[l]. One primary limi-
tation to the AR spectral estimator is its sensitiv-
ity to white noise. Various approaches have been
proposed to combat the noise problem, e.g.,[2-6].
In AR PSD estimation, the linear prediction coef-
ficients (LPC) must be estimated from the Yuler-
Walker equation first. Since the autoregressive prop-
erty holds over different data domains, the LPC
can be estimated simultaneous over these domains
to reduce its sensitivity to noise. The data do-
mains include data itself, autocorrelation of data
and the generalized autocorrelation domains which
are to be defined latter. The method of estimating
LPC based on data and its generalized autocorrela-
tion sequence is named generalized autoregressive
(GAR) method here. The GAR method has two
major advantages : a) No change to the AR model
of the underlying process. b) lower threshold effect
of noise.

* This work was supported by the National Sci-
ence Council, R. O. C., under Project NSC-81-
0404-E002-016.

Comparisons of this algorithm to the covari-
ance method will be given latter. Its relative per-
formance to other techniques can be inferred from
existing literatures(1].

GENERALIZED AUTOREGRESSION

An AR process z(n) can be represented by the
following difference equation.

Za;z(n — 1)+ u(n)

i=1

z(n) (1)

n:p,---,N

where a;’s are the LPC and u(n) is the driven force.

It is well known that the autocorrelation se-
quence (ACS) ry(k) of z(n) obeys the same differ-
ence equation also:

P

> airy(k—i)

i=1

ri(k) (2)

k:py"'»p+L1

where L) is the effective length of (k). rp(k) is
defined as the m — th generation of autocorrelation
sequence hereafter. Treating ri(k) as a realization
of the random process R;(-), one may perform the
autorcorrelation operation on r; (k) to produce the
second generation of ACS ry(1), and ro(I) obeys the
same difference equation as

P
D aira(l - i)
i=1

I:pr"'1p+L2

(1) (3)

A generalized Yule-Walker (GYW) equation can
be formed by (1),(2) and (3). The resulting equa-
tion is

(D¥D).a=D"4d (4)
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where D is the generalized data matrix defined as

[' (N —1) (N =-p)
(N ~2) (N -p+1)
=(p) o(1)

ri(p+L; —1) r1(Ly)
ri(p+ Ly —2) ri(Ly —1)
r1(17.— 2) r1é0)
r2(p+ Ly —1) ra(L2)
ra(p + L2 -2) r2(Lz —1)
L r:(p.— 2) -,io) J

a= (a(l),u-’a(p))T,
d= (x,r1,r2)7,
x= (:c(N),---,a:(p+1)),

rp= (ri(p+Li—1),---ri(p—1))and
(r2(p+ Lz — 1), -ro(p - 1)).

The AR parameters in a can be estimated by solv-
ing the least square solution of the GYW equation.

This concept can be applied further to include
more generations of ACS into the GYW equation
to reduce its sensitivity to noise. Longer data will
allow longer L, and more generations of ACS to
use in the GYW equation. An additional choice is
to add the backward prediction equations into the
GYW equation as the covariance method does. In
fact, the selection of number of generations of ACS
to be used depends not only on the data length but
also on the SNR, which will be discussed in next
section.

After the LPC is solved, the theorectical AR
PSD is

l‘2=

0.2
Y 5
[1 - 3%, axexp(j2nf)[® ®

where o2 is the variance ( power ) of the driven
force u(n) in equation (1). Its value can be esti-
mated from the theory of maximum likelihood es-
timation.

Pea(f) =

THE GENERALIZED AR METHOD

Although GAR is simple in formulation as above,
its implementation to real data corrupted by noise
will be complicated by several decision problems.
However, comparing to standard AR methods(1],
those decisions open the door for the GAR PSD
estimator to control the effect of noise.

In real data processing, the random process
z(n) is sampled with error and therefore estimating
generations of ACF from x(n) is in error also. For
the GAR with one generation, the required data
are

y(n) z(n) + Az(n)

P
Za;z(n — i) + Az(n) (6)
i=1

and

ryy (k) rzz(k) + Arzo(k)

D airaa(k — i)+ Ar, (k) (7)

i=1

where y(n) is the sample of z(n) with error Az(n)
which includes white noise, ry, (k) is the estimate of
rzz(k), and Ar,,(k) is the estimate error of rzz(k)
due to Az(n) and effect of finite data length. The
LPC is estimated as the least square error (LSE)
solution of eq. (6) and (7). To find an unbi-
ased LSE solution, it is required that Az(n) and
Arz(k) have zero mean and equal variance of o,
and 03,. In general, Az will be zero mean but
E[Arg;] = 0 is questionable. Thus the GAR solu-
tion could be biased. The other concern of equal
variance will required us to utilize weighted least
square method by introducing a weight W to make

Var[Az] = Var[W Ar]. (8)
Thus eq. (7) becomes
reg(k) = Wryy(k)
= Wroo(k) + WAr, (k)
= }f‘;a,-Wr,,(k — 1) + WAr.,(k)(9)

and the LSE solution is solved from eq. (6) and
(9).

In fact, for high SNR, standard AR methods
provide the optimum estimate of a;, generalization
will cause bias to the solution. For low SNR, the
phenomenon is reversed, i.e. the generalized solu-
tion will be more accurate. From the above prop-
erties, we must select a best number of generations,
this is in genaral a complicated decision problem.
For the case of short data with low SN R, it is sure
that GAR method will always use the maximum
number of generations to combat noise.
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There is another decision problem in the se-
lection of the effective length L,, of ACS’s used
in GYW equation. An emperical choice is L;'- <
Lny1 < %;"[7], with Lo = N. Since L, is in gen-
eral greater than the order of the AR model, the
use of rm(k), with k > p, in the GYW will make
GAR method possesses the same advantages as
those methods using high order Yule-Walker equa-
tions[4]. This property combined with the number
of generations used in the GYW equation make the
GAR method be able to work at low SNR by using
longer data. Using more data to combat noise is
always a reliable way in the statistical sense.

COMPUTER SIMULATION

The performance of GAR is shown by sinu-
soidal spectrum estimation first. The signal con-
sists of two complex sinusoids with equal power, at
frequencies of 0.30 and 0.35, and N=40. Fig.1~3
show the overlayed spectrums estimated by GAR
for three generations, i.e., m = 0,1,2, when p = 4
and SNR = 6dB. Note that zero-th generation is
exactly the covariance method.

To compare the performance of GAR method
with the modified covariance method[1], their ca-
pability in probability of resolution[8] are given for
different SNR. In the implementation of GAR, an
algorithm to estimate the optimum weights for each
generation of ACF is required. In this simulation a
suboptimum way to implement GAR is used. The
algorithm set all weights equal to unit and check
the prediction error at successive generations. When
the prediction error increases abruptly at certain
generation, the algorithm stops and the solution of
its previous generation is accepted.

The signals are considered as been resolved if
they appear as two zeros of A(z) = 1— Zf;l a;z7"
at their right frequencies and are closest to the unit
circle. Fig.4 shows the probability of resolution for
the modified covariance method and GAR method
when p = 8 and SNR is varied from 0 to 25 dB.
The improvement in SNR is about 5 dB.

The performance of GAR for general AR pro-
cess has been verified, but due to the limitation of
space, it is not given here.

CONCLUSION

A generalized autoregressive method is proposed
for the estimation of model parameters of an AR
process imbedded in noise. Some preliminary study

does show its capability in noise suppression. This
capability comes from efficient use of the informa-
tion across different data domains. Several control
parameters appearing in GAR formulation require
further study for their optimum values.
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Fig.1 Overlayed spectrum of two equal power, closely
spaced sinusoids using the covariance method.
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Fig.2 Overlayed spectrum for the same signal as
Fig.1, but using GAR with one generation.
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Fig.3 Overlayed spectrum for the same signal as
Fig.1, but using GAR with two generation.
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Fig.4 Comparison of probability of resolution for
two equal power sinusoids with different SNR.




