Test Set Compaction for Combinational Circuits

Jau-Shien Chang

Chen-Shang Lin

Department of Electrical Engineering
National Taiwan University, Taipei, Taiwan, ROC

Abstract

Test set compaction for combinational circuits is
studied in this paper. Two active compaction method-
s, forced pair-merging and essential fault pruning, are
developed to reduce a given test set. Together these
two methods, the compacted test size is smaller than
known best resulis[1] by more than 20% and is only
20% larger than the established lower bound.

1 Introduction

In the past years, most efforts of logic testing have
been concentrated on how to efficiently generate a
complete test set for a circuit without specifically con-
sidering the size of test set. Because the test applica-
tion time is dependent on the size of the test set and
the test set of a circuit may be applied to thousands of
chips, a compact test set is necessary for economical
testing and the additional test set compaction is fully
justified.

Since the complexity of computing the the min-
imum number of tests required to detect all single
stuck-at faults in an irredundant combinational circuit
is proven to be NP-hard[5], many heuristic methods
for test set compaction have been proposed[1-4,6-8,14].
These methods can be roughly classified into com-
paction during test generation and post-generation
compaction.

(1) Compaction during test generation:

The key concept of compaction during test gener-
ation is: if the fault coverage of each test pattern is
maximized during test generation, then the total num-
ber of patterns will be reduced. Several methods(1,3,8]
based on dynamic compaction have been proposed. In
dynamic compaction, the current generated pattern is
used as constraints at primary inputs and carefully se-
lects the next target fault such that a test pattern can
be generated under the constraints. Obviously, the
compaction result is directly affected by the order of
target faults. In [1,6], the concept of compatible fault
set is used to determined the order of target faults.
Because all faults in a compatible fault set can be po-
tentially detected by a single test pattern, the next
target fault is selected in the same compatible fault
set. However, the generated test set[1], although s-
maller than other methods, is still much greater than
the known lower bound.

0-8186-2985-1/92 $03.00 © 1992 IEEE

20

(2) Post-generation Compaction:

In this approach, a given test set is used as the
starting point to perform compaction. Most method-
s along this approach are either to remove patterns
in the test set by fault covering methods such as par-
tial fault table construction[4] and reverse order fault
simulation[4][10], or to merge patterns by static com-
paction 3] that takes advantage of the unspecified bits
in the patterns. But, whatever compaction by fault
covering methods or static compaction, the pattern-
s in the given set are not modified or only passively
modified, namely only unspecified bits in patterns can
be modified. As a result, for a highly incompatible
test set, static compaction achieves little reduction.
Similarly, if each pattern in a test set has at least an
essential fault (i.e. an irredundant test set), the fault
covering method and its variations would not compact
the test set.

In this paper, post-generation test set compaction
for combinational circuits is studied. To effectively
achieve compaction deterministically, two active com-
paction methods, forced pair-merging and essential
fault pruning, are developed. In forced pair-merging,
two incompatible test patterns are merged by mod-
ifying their incompatible bits without sacrificing the
original fault coverage. The other method, essential
fault pruning, achieves further compaction from re-
moving a pattern by modifying other patterns of the
test set to detect the essential faults of the target pat-
tern. By these active compaction methods, the com-
paction for an incompatible and irredundant test set
becomes possible.

To show the effectiveness and robustness of the pro-
posed techniques, two groups of test sets of ISCAS
combinational benchmark circuits{12], which are gen-
erated by two different test generators, are used as the
start test sets. The compacted test size is smaller than
known best results, COMPACTEST([1], by more than
20 % and is only 20 % greater than the established
lower bound. Furthermore, the difference between the
two groups of compacted test sets are only 2. This
shows the robustness of our methods.

The paper is organized as follows. Sections 2 and 3
introduce the details of forced pair-merging and essen-
tial fault pruning respectively. Section 4 discusses the
computed lower bound of the minimum test size. The
experimental results are given in section 5. Section 6
provides the conclusions.

2 Forced Pair-Merging

The proposed active compaction technique, Forced
Pair-Merging (FPM), is considered in this section.

First we will define some terminologies. Given the
fault list F of a circuit and the complete test set T for
F, the set of faults detectable by a pattern t in T is
denoted by DET(t). The essential faults of t, ESS(t),
are the set of faults which can only be detected by t
but not any other patterns in T. Evidently ESS(t) is
contained in DET(t) and DET(t) C F. The potential
essential faults of a set of patterns P C T, PESS(P),
are the set of faults that can be detected by all pat-
terns in P but not by other patterns in T. For example,
given F = {f1,f2f3,/4,5} and T = {t1,t2,t3}, if DE-
T(t1) = {f1,83f5}, DET(t2) = {f2,f3} and DET(3) =
{f4,5}, then PESS({t1,t2}) = {f3} and PESS({tl,th)
= {f5}. Two test patterns, t1 and t2, are said to be
compatible if the corresponding bits of t1 and t2 are (1)
with the same logic values, or (2) at least one of them
is X’ (don’t-care or unspecified value). For examples,
t1 = (010X) and t2 = (0X00) are compatible.

In static compaction(3], the reduction of test set is
achieved by merging two compatible patterns into a
new pattern. Thus, the success of static compaction
will heavily depend on the number of unspecified bits
of test patterns. However, in the modern test gener-
ation system, when a test pattern is generated, the
unspecified bits are usually randomly or heuristically
assigned 1’ or ’0’ to increase its fault coverage and
reduce the total test generation time. For such a test
set, the compatibility among patterns is quite poor in
general, and static compaction can achieve little re-
duction of the test set.

To increase the compatibility among patterns such
that the test set can be further reduced and without
sacrificing the fault coverage, an active compaction
technique, forced pair-merging, is proposed here. In
forced pair-merging, an incompatible pair of pattern-
s are modified in such a way that the modified pair
becomes compatible and still detect the essential and
potential essential faults of the original pair. If the
process is successful, then the modified pair of pat-
terns can be merged into one pattern and the test set
is reduced. To achieve this goal, the incompatible bits
of a given pair of patterns are made to be compatible
by raising the corresponding bits in one of the pattern-
8. To raise a bit in a pattern is to change the bit value
from the specified value (’0’ or ’1’) to the unspecified
value (’X’). If all the incompatible bits are raised and
thus become compatible, then the two patterns can
be merged. For example, if two incompatible pattern-
8, (0101) and (0000), can be raised to be (0X01) and
(000X) respectively, they can be merged to (0001).
However, the modification on the test set must not re-
duce the fault coverage of the original test set. In our
works, the following observation is used as the basis
to raise specified bits and simultaneously preserve the
fault coverage of the test set.

Observation 1:

For a patiern t in a test set T, if t is substituted by
i’ such that ESS(t) C DET(t’), then T’ = (T-{t}) U
{t’} at least has the same faull coverage as T.

21

raise bit(t,b) /* try setting the b-the bit of t to 'X' */
{

backup t ;
th] = 'X’;
apply t to the circuit ;
for each fin ESS(t)
if (f is not detected by t) {
restore i ;
return(FAIL) ;

return(SUCCESS) ;

(a)

FPM(T) /* Forced Pair-Merging for a given test set T */

T' = T* = EMPTY ; /* T* will be the final test set */
while (T != EMPTY) {
pick a patiern t1 form T;
t1’ = t1 ; /* backup t1 */
raise each bit of t1 ; /* raise pattern t1 */
T'=T-{t1};
while (T’ != EMPTY) {
pick a pattern t2 form T';
if (raising incompatible bits in t2 success) {
t1 = merge(t1,t2) ;
T="T-{t2};
rasse each bit of t1 ;

o

}
T =T - {18} ;

heuristically assign unspecified bits of t1;
T* = T*u {1} ;
T=T-{tt};

T=T*,;

()

Fig. 1 Algorithm of force pair-merging

Obviously, t is a trivial solution of t’. And, because
the smallest DET(t’) is ESS(t) and ESS(t) C DET(t),
it is possible to generate a t’ by assigning some speci-
fied bits of t to *X’. For example, for a test pattern t =
§0011) with DET(t) = {f1,f2,f3} and ESS(t) = {f1},

1 may be still detected by t when the last two bits of
t is assigned to 'X’. If 80, t can be modified to (00XX)
and then is a solution of t’.

Raising a bit of a pattern is the basic operation of
FPM. Based on Obervation 1, the algorithm of bit
raising is shown in Fig.1(a). For a test pattern t,
raise_bit(t,b) tries to set the b-th bit of t to 'X’ while
preserving the coverage of ESS(t). The coverage of
ESS(t) can be verified efficiently by fault simulation.

When performing FPM on a test set T, the process
is carried out in a greedy way. It takes the first pat-
tern from T as a seed pattern, say t1, and raises t1
as far as possible, i.e. with the most X’s while still
able to detect ESS(t1). Then, for each of the remain-
ing patterns, say t2, it tries to raise those bits of t2

which are incompatible with the raised t1. If the pro-
cess successes, the pair are merged into a new pattern
that will replace t1 as the seed pattern. T is then
updated by discarding t2. Otherwise, the raised seed
pattern remains intact and another t2 is selected for
merging with t1. After trying all the remaining pat-
terns in T, the originally empty set T* is unioned with
the seed pattern and t1 is removed form T. The above
process continues by taking another t1 form T or ter-
minates if T becomes empty. At last, the resultant
T* will be the reduced test set. The detail algorith-
m is shown in Fig. 1(b). For the earlier example, to
merge tl:(OlOlI)) and t2=(0000), the possible merg-
ing process in FPM is shown as follow. Initially, t1 is
raised and becomes (0XX1P. Then, because the last
bit of t2 is still incompatible with the raised t1, t2 is
modified to (000X). Finally, t1 and t2 become compat-
ible and can be merged into (0001). It worth noting
that, to preserve the fault coverage, the merged pat-
tern must be made sure to detect not only ESS(t1) U
ESS(t2) but also PESS({t1,t2}). To accomplish this,
PESS({t1,t2}) is combined into ESS(t2) before calling
raise_bit for t2 in the algorithm.

In fact, the forced pair-merging method can be seen
as the modification of one pattern to cover the essen-
tial faults of another pattern. A generalization of this
method to further reduce a test set is to be described
in the next section.

3 Essential Fault Pruning (EFP)

The Essential Fault Pruning (EFP) method is a
generalization of forced pair-merging in the sense that
for given pattern t, EFP tries to actively modify the
rest of test set to prune all the essential faults of t.
An essential fault of t is said to be pruned if it turns
to be detected by another pattern after the modifi-
cation. If this is possible, t can be removed and the
test set can be reduced. Since, in EFP, ESS(t) is now
to be detected not by a single modified pattern as in
FPM but by the whole remaining modified test set,
there is evidently more chance of success and the thus
test set can be further reduced. For example, for a
fault list F = {f1,f2,f3,f4,f5,f6} and its complete test
set T = {t1,t2,t3}, where DET(t1) = {f1,f2,f3}, DE-
T(t2) = {f3,f4,/5} and DET(t3) = {f5,{6}, if t2 and
t3 can be modified to t2’ and t3’ such that DET(t2’)
= {f1,£3,f4,f5} and DET(t3’) = {f2,f5,6}, then t1 has
no essential fault and can be removed from T.

The above operation of modifying a test pattern t
for further detecting an additional fault f is basically
to generate a pattern t’ such that DET(t’) D (DET(t)
U {f}). Note that, from Observation 1, DET(t) U {f}
can be substituted by ESS(t) U {f}. In our implemen-
tation, Multiple target Fault Test Generation (MFTG)
is used to check the existence of such a t’ and to ob-
tain it. For a set of target faults, MFTG finds a test
pattern to simultaneously detect all faults in the set.
In general, the efficiency of MFTG is dependent on
the number of target faults.

Our MFTG algorithm consists of two phases. In
the first phase, the pattern to cover the extra fault
is first raised as far as possible while still detecting
its essential faults. Then the raised pattern is used

22

PR_MFTG(t,f) /* Pattern-Raising MFTG, t: pattern, f: fault
*/

{
backup t ;
raise each bit of t ; /* with respect to ESS(t) */

if (ATPG(tf) == SUCCESS)

return(SUCCESS) ;
else {
restore t;
return(FAIL) ;
}
}
(a)

EFP(t1) /* Essential Fault Pruning for t1 */

store the test set ; /* for later recovery */
ESS_SET = ESS(t1) ; /* collect the essential fault of t1 */
for each fault fin ESS_SET {
prune = FAIL ;
for each pattern t2 in T { /* where t2 /= t1 */
if (MFTG(t2,f) == SUCCESS) {
prune = SUCCESS ;
break ;
}
}

if (prune == FAIL) {
recover the test set ;

return(FAIL) ;

if (fault coverage decrease)
if (last MFTG() == FAIL) {
recover the test set ;
return(FAIL) ;

}

remove t1;

return(SUCCESS) ;

()

Fig. 2 Algorithm of essential fault pruning

to generate a new pattern to detect the extra fault
while keeping its specified bits intact. Since the raised
pattern has already detect its essential faults, the new
pattern, if the generation succeeds, will detect these
essential faults as well as the extra fault. Thus test
generation time for the essential faults can be saved
in this phase. However, because the generated pattern
is constrainted by the raised pattern, it is less effective
t}(la;l the second phase. The algorithm is listed in Fig.
2(a).

The second phase employed the unique value as-
signments technique proposed in (7] for MFTG. In this
phase, the uniquely (necessarily) determined values of
each target fault are found first. If all the unique val-
ues are consistent, then these unique values are as-
signed to the circuit as constraints of test generation.

Now, we begin to describe the details of EFP. The
algorithm of EFP is shown in Fig. 2(b). In EFP,
to see whether a pattern t can be be removed, each

of its essential faults will be tried to be detected by
modifying anther pattern. If all essential faults of t are
pruned, the pattern can be removed from the test set
readily. MFTG(t2,f) denotes Multiple target Faults
Test Generation for ESS(t2) and f. If MFTG(t2,f)
successes, t2 is replaced by the generated pattern that
can detect ESS(t2) and f. If any fault of ESS(t1) fails
to be covered by other patterns, EFP(t1) returns fail.
Otherwise, t1 may be removed at last. Note that,
as in FPM, PESS({t1,t2}) may be not detected by
the new test set. Hence, before remove t1 from T,
the number of the total detected faults is compared
with that before EFP process. If the total detected
faults decrease, last MFTG() is called to use MFTG
to cover all these missed faults with other patterns.
If last MFTG() successes, t1 can be removed from T.
Otherwise, t1 is retained.

Although essential fault pruning is more general
and thus more powerful than forced pair-merging, it
is also far more time-consuming. To effectively incor-
porate the two methods, the FPM is first employed
then the EFP is used to remove the hard-to-remove
patterns.

4 Lower Bound on the Size of Mini-
mum Test Set

The effectiveness of a test set compaction method
can be best measured by the size of Minimum Test
Set (MTS), the computation of which unfortunately is
NP-hard[5]. Nevertheless a lower bound on the MTS
can still help us to qualify the result of test set com-
paction. The computation of the lower bound of MTS
has been studied in [6] by finding the maximal clique of
an independent graph. The nodes in the independent
graph are all the concerned faults and there is an edge
between two nodes if their corresponding faults are in-
dependent. Two faults are independent if there is no
single test pattern can detect the two faults sitnultane-
ously. In general, the size of the maximal clique found
heuristically is only a lower bound but not necessarily
the greatest lower bound of the MTS.

In our computation of the size of MTS, the con-
struction of the independent graph is similar to that
in [6,7). But, on finding the maximal clique, sever-
al different heuristics have been used. The heuristics
include random, largest-degree-first, and exhaustive-
seed. The largest one from different heuristics is then
the chosen lower bound. The computed lower bound-
s for the ISCAS'85 benchmark circuits[12] are shown
in Table 1 together with those reported in [6]. Our
computed bounds are greater by 24% on average.

It is worth noting that even the true size of the max-
imum clique in an independent graph is not necessar-
ily the greatest lower bound of MTS. First, from the
independence graph G, the minimum chromatic num-
ber of G (denoted as MIN_COLOR(G)% with adjacent
nodes of different colors is a theoretically tighter low-
er bound than that from the maximum clique. How-
ever, because the computation of minimum chromat-
ic number of a large graph is complex and an ap-
proximate coloring may overestimate the chromatic
number (hence the lower bound), it is impractical to

23

Circuits | MUTE[7] | OURS
432 21 24
<499 50 52
<880 12 12
<1355 81 84
1908 79 94
<2670 21 40
c3540 79 80
c5315 13 37
c6288 5 5
c7552 24 49

[TOTAL | 385/1.0 | 477/1.24 |

TABLE 1. Computed lower bound of minimum test size

find the lower bound from MIN_.COLOR(G). Second-
ly, MIN_.COLOR(G) is still not necessarily equivalent
to the MTS size because nodes (faults) painted with
the same color may be not detected by a single test
pattern simultaneously. The size relationship among
the known test set (KTS), minimum test set (MTS),
minimum chromatic number of G (MIN_.COLOR(G))
and maximum clique of G (MAX_CLIQUE(G)) can
then be shown as follow.

[KTS| > [MTS| > MIN.COLOR(G) > MAX_CLIQUE(G)

Given the above facts, the comparison of com-
pacted test set size and the lower bound computed
from the maximal clique indicates a well-compacted
set when its size is equal to or very close to the
MAX_CLIQUE(G). However, when the discrepancy is
large, the compaction could be one but not all of the
causes.

5 Experimental Results

A Test Set Compaction (TSC) system has been im-
plemented on SUN4 SPARC station 2. In TSC, first
the fault table is constructed from the given test set,
a heuristic covering is performed for pre-compaction
and the essential faults of each pattern are identified.
Then, forced pair-merging and essential fault pruning
are performed sequentially.

The 10 ISCAS combinational benchmark circuit-
s[12] are used as test examples of TSC. Two test sets
for each circuit are evaluated. The first test set is
from a PODEM-based ATPG and the second is from
TEGAR/13] which is a test generation and compaction
tool similar to subscript D-algorithm. In general, the
test set generated by TEGAR is more compact than
PODEM. Both sets are complete test sets and have
been fault simulated with reversed order to reduce the
apparent redundancy. Their results are shown in Ta-
ble 2 and 3, respectively. The comparison of TSC with
the known best result is shown in Table 4. All results
of TSC have been verified by fault simulation.

In Table 2, the compaction results of TSC starting
from the test sets generated by PODEM-based ATPG
are shown. The PODEM column lists the size of these
original test sets. The other columns shows the result-

Circuits | PODEM COVER FPM EFP
c432 55 47 43 29
c499 64 59 59 53
c880 68 57 38 21
c1355 96 93 93 86
1908 142 134 133 106
c2670 152 127 103 45
c3540 176 150 120 91
c5315 181 158 87 49
c6288 33 23 23 14
c7552 272 231 143 77

TOTAL | 1239/1.0 | 1079/0.87 | 842/0.68 | 571/0.46 |

COVER: heuristic covering on the fault table
FPM: Forced Pair-Merging
EFP: Essential Fault Pruning

TABLE 2. Results of TSC starting from PODEM

Circuits | TEGAR | COVER FPM EFP
c432 43 42 41 30
c499 55 54 54 53
c880 28 28 27 20
c1355 88 87 87 86
c1908 115 114 114 106
c2670 66 62 57 46
c3540 165 146 122 89
c5315 89 87 71 49
c6288 26 25 23 17
c7552 150 145 112 77

TOTAL | 825/1.0 | 790/0.96 | 708/0.86 | 573/0.69 |

TABLE 3. Results of TSC starting from TEGAR

s at the end of each compaction step. It can be seen
from the reduction ratio that TSC reduces more than
one half, 54%, test patterns on average from the orig-
inal sets. Table 3 lists the compaction result starting
from TEGAR. Even for these more compact test sets
from TEGAR, there is still 31% reduction by TSC.
Furthermore, the difference between the total resul-
tant patterns in TABLE 2 and 3 is only 2 patterns.
This clearly shows the robustness of TSC.

In these test sets, all bits of test patterns are spec-
ified and static compaction will achieve no reduction.
As for the fault covering methods, the gains of heuris-
tic covering is only 13% and 4% in Table 2 and 3 re-
spectively. Furthermore, for the more compacted s-
tarting test sets in Table 3, the effectiveness of the
heuristic covering decreases significantly, from 13% to
4%. Therefore, in terms of effectiveness, FPM and EF-
P are clearly superior to static compaction and fault
covering methods.

On the test compaction, the previous best result
on benchmark circuits can be found is that of COM-
PACTEST[1]. In Table 4, the results of TSC, COM-
PACTEST, and the lower bounds from Table 1 are
compared. Since only eight of the ten circuits are re-
ported in [1], SUM(8) in the table is the summation of
the last 8 circuits. The lower bounds on LB column are

24

Circuits] LB TSC-PDM | TSC-TGR
c432 - 24 29 30
c499 - 52 53 53
880 30 12 21 20
1355 86 84 86 86
c1908 115 94 106 106
c2670 67 40 15 46
3540 115 80 91 89
5315 56 37 49 49
c6288 16 5 14 17
c7552 87 49 77 7

[SUM(8) | 572/1.43 | 401/1.0 | 489/1.22 | 490/1.22 |

[TOTAL | - a77/1.0 | s71/1.2 | 573/1.2 |

LB: Lower Bound on the size of MTS
SUM(8): Summation of the last cight examples

TABLE 4. Comparisons of compaction results

Circuits | COVER | FPM EFP TOTAL
c432 2.9 4.4 37.5 44.8
c499 8.7 3.8 37.5 50.0-
c880 5.8 12.6 137.6 156.0
c1355 28.0 14.2 239.1 281.3
c1908 57.4 47.0 719.6 824.0
c2670 58.4 111.8 732.3 902.5
<3540 139.4 146.9 | 2139.3 2425.6
c5315 202.9 400.0 | 3557.7 4160.6
c6288 180.3 8.5 4455.2 4644.0
c7552 492.6 838.3 | 8402.2 9733.1

*CPU-time in seconds on SUN4 SPARC station 2

TABLE 5. CPU-time of compaction for PODEM-START

the same as those in Table 1. From the table, it can be
seen that except c6288 in TSC-TGR column, all the
results of TSC are superior or equivalent to that of
COMPACTEST. From the ratio in the SUM(8) row,
our test sets are 21% closer to the lower bound than
COMPACTEST. Totally, our results are only greater
than the lower bound by 20%.

Table 5 shows the CPU-time of the 10 examples on
the PODEM-START test sets. The required cpu-time
is significantly more than that of simple test genera-
tion[9,10]. However, the time is not prohibitively long
and the invested cpu-time in compaction would be well
repaid in the test application when thousands of chips
are tested.

6 Conclusions

Test set compaction for combinational circuits has
been studied in this paper. Two active modification
methods have been developed to reduce a given test
set. One is the forced pair-merging which enhances
the compactability of a pair of patterns by modifying
the incompatible specified bits without sacrificing the
original fault coverage. The other is the essential fault
pruning which removes a pattern by modifying other
patterns of the test set to detect the essential faults
of the target pattern. Besides, to qualify the result of

compaction, the method of finding a lower bound of
the minimum test size is investigated also. The eval-
uation on the ten ISCAS’85 benchmark circuits has
demonstrated the effectiveness of these two method-
s. In respect to efficiency, our proposed techniques
are relative to the size of the circuit and the number
of pattern in the original test patterns. Besides, the
multiple target fault test generator is particularly vi-
tal due to its intensive use. Therefore, how to speed
up the MFTG will be our future work on the system.

References

{1] I. Pomeranz, L. N. Reddy and S. M. Reddy,
“COMPACTEST: A Method to Generate Com-
pact Test Sets for Combinational Circuits,” In-
ternational Test Conference, pp. 194-203, 1991.

(2] J. F. Mcdonald and C. Benmehrez, “Test Set Re-

duction Using the Subscript D-Algorithm,” Inter-

national Test Conference, pp. 115-121, 1983.

P. Goel and B. C. Rosales, “Test Generation &
Dynamic Compaction of Tests,” IEEE Test Con-
ference, pp. 189-192, 1979.

J. L. Carter, S. F. Dennis, V. S. Iyengar and G.
K. Rosen, “ ATPG via Random Pattern Simu-
lation,” Proc. Int. Symp. Circuits Syst., pp. 683-
686, June 1985.

B. Krishnamurthy and S. B. Akers, “On the Com-
plexity of Estimating the Size of a Test Set,”
IEEE Trans. on Computers, Vol. c-33, No. 8, pp.
750-753, August 1984.

(6] S. B. Akers, C. Joseph and B. Krishnamurthy,
“ On the Role of Independent Fault Sets in the
Generation of Minimal Test Sets,” International
Test Conference, pp. 1100-1107, 1987.

Gert-Jan Tromp, “Minimal Test Sets for Com-
binational Circuits,” International Test Confer-
ence, pp. 204-209, 1991.

[8] M. Abramovici, J. J. Kulikowski, P.R. Menon and
D.T. Miller, “ SMART and FAST: Test Genera-
tion for VLSI Scan-Design Circuits,” IEEE De-
sign & Test, pp. 43-54, August 1986.

[9] H. Fujiwara and T. Shimono, “On the accelera-
tion of Test Generation Algorithms,” IEEE Tran-
3. on Computers, Vol. C-32, No. 12, pp. 1137-
1144, Dec. 1983.

[10] M. H. Schulz, E. Trischler and T. M. Sarfer-
t, “SOCRATES: A Highly Efficient Automatic
Test Pattern Generation System,” IEEE Trans.
on CAD, Vol. 7, No. 1, Jan. 1988.

{11] P. Goel, “An Implicit Enumeration Algorithm to
Generate Tests for Combinational Logic Circuit-
s,” IEEE Trans. on Computers, Vol. C-30, No. 3,
March 1981.

25

[12] F. Brglez and H. Fujiwara, “A neutral netlist of
10 combinatorial benchmark circuits and a target
translator in fortran,” Proc. Int. Symp. Circuits
Syst., June 1985.

[13] M. H. Lee, “Test Pattern Generation System for

Compacted Test Sets,” Master Thesis, National

Taiwan University, June 1991.

J. H. Aylor, J. P. Cohoon, E. L. Feldhousen and
B. W. Johnson, “Compacting Randomly Gener-
ated Test Sets,” ICCD, pp. 153-156, 1990.

14]

