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Abstract : We propose a very powerful trellis coded mod- 
ulation (TCM) scheme which has the structure of mul- 
tilevel and single-stage coding. For the proposed TCM 
scheme, the encoder consists of a binary convolutional en- 
coder which is followed by a multilevel delay processor and 
a signal mapper. By computer search, we find many useful 
TCM systems which are good for AWGN channels. 

I Introduction 
Multilevel coding 11-51 is a frequently used technique in de- 
signing coded modulation systems. Suppose that there are 
2" signal points in a signal constellation. Then, the signal 
constellation can be partitioned into an m-level structure. 
In the conventional multilevel coding, m binary codes are 
used for encoding the m levels, where the m binary codes 
may not necessarily be distinct. We may say that the s y s  
tem has an m-level and m-stage coding structure. 

In section 11, we propose a multilevel trellis coded mod- 
ulation (TCM) scheme for which a single (m,r) binary 
convolutional code C is used for encoding and decoding. 
We say that such a system has a multilevel and single- 
stage coding structure. At each time unit, r message bits 
are encoded into m code bits. Through a multilevel delay 
processor, various time delays are introduced to these m 
code bits. The output of the multilevel delay processor 
is a binary m-tuple which is then mapped into a signal 
point of the signal constellation through a signal mapper. 
The decoding for the proposed TCM is described in section 
111. In section IV, many TCM systems which are good for 
AWGN channels are found by computer search. Simula- 
tion and theoretical analysis are provided for some TCM 
systems. Finally, conclusions are given in section V. 

I1 The Proposed Trellis Coded 
Modulation Scheme 

The original TCM scheme proposed by Ungerboeck [6] uses 
the concept of set partitioning of a signal constellation and 
does not have the multilevel coding structure. In [2], Imai 
proposed a TCM which uses the concept of set partitioning 
of a signal constellation and has a multilevel and multistage 

coding structure. We now propose a new TCM which also 
uses the concept of set partitioning of a signal constella- 
tion and however has a multilevel and single-stage coding 
structure. 

Let WO be a constellation which consists of 2" signal 
points. Each signal point L;I(s") in WO can be labelled by 
m bits, i.e., s" = (SI , s2,. . ., sm). Suppose that we want to 
construct a TCM based on WO which has a coding rate of 
r information bits per signal point, where 1 T 5 m - 
1. An (m,r) binary convolutional code C will be used. 
The encoding for the proposed TCM is shown in Fig. 1. 
At the t-th time unit of encoding, an r-bit information 

Figure 1: Encoding of the proposed TCM 

G ( t )  = (ul( t ) ,  uZ(t), . . ., u,(t)) is fed into the encoder of C 
and an m-bit code branch u"(t) = (wl(t), w2(t) ,  - e  ., vm(t)) is 
produced by the encoder of C. The output of the encoder 
of C is fed into a multilevel delay processor for which the 
output is an m-tuple g ( t )  = ( s l ( t ) , s 2 ( t ) , . . .  sm(t)> such 
that 

m 

sl(t) = 211 (t - ~ i ) ,  1 = 1, . . . , m, (1) 
i =I 

where Xi, 1 = 1 , 2 , - . . , m  are delay constants and A, = 0. 
The m-tuple S ( t )  is then mapped into a signal point G(."(t)) 
in W O  by a signal mapper. 

In the following, we show a specific design of TCM 
which can take advantage of the introduced multilevel 
delay processor. Let 2 1  = (sl,sz,...,spl), 22 = 

where 1 5 q 5 m and p ,  = m. In this way, we 
have s" = ( s ~ , s I , .  . . , sm) = ( z l , t 2 ,  - - .  , zq). Let E' = 
(s{,s$,...,sL) = (z{,~$,...,ti) . Let D2(G(S),G(s"')) de- 
note the Squared Euclidean Distance (SED) between two 

(Sp1+1,Sp1+2,--., .PA..., zq = (Spn-1+1,Spn-1+2, . . ' I  "p,), 
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signal points &(;) and G(2) .  We define 

65(x:j = a, x; = 6 )  = 
min (O~(G(Z),G(~')) : ~(i),~(i') E ~ o } , j  = 1 

(02(G(i),G(i')) : G(i),G(i') E WO, 
x j = qx'. = b 

(2) 

and xi =xi for 1 _< a' < j - l}, 1 < j 5 q. 

In this way, we partition WO into a q-level structure. 

Example 1 : Consider the 8PSK constellation as given 
in Fig. 2. Let 21 = S I ,  2 2  = sa and 2 3  = s 3 .  We have 
Sf(21  = 0 , ~ ;  = 0) = 0, S f ( ~ 1  = 0 , ~ ;  = 1) = 0.586, 
g(z2 = 0,s; = 1) = 2, 6 3 x 3  = 0, Z$ = 1) = 4. 

G(S1SaS3) = G(O10) 

G(l0l) U G(111) 

G(011) 

Figure 2: 8PSK signal constellations. 

Example 2 ; Let x 1  = S I ,  2 2  = (sa, s3). We have 6 f ( q  = 
0 , ~ :  = 0) = 0, S f ( ~ 1  = 0 , ~ :  = 1) = 0.586, Sg(22 = 
(OO),c', = (10)) = 2, 6;(22 = (OO),s', = (11)) = 2, and 

With the q-level WO, we can design a q-level and single- 
S,2(zz = (OO), Z; = (01)) = 4. 

stage TCM. We set the delay time constants to be 

(3) 

(v1 ,02 ,  * .  . I  vpup,), Y2 (WPl+l1 vp1+2, * * * ,  vpa)l * . - ,  Yq = 

(~1,~2,...,~,)=(Y11y2,.'.,Yq). By (1) and (3),wehave 

(4) 

0, 
A, 

p j - 1 +  1 5 1 < pj and 1 5 j 5 q 
1 =pi  and 15 j 5 q -  1, 

A1 = { 
where po = 0 and A is a constant. Write y1 = 

( v ~ q _ l + l , v p q _ 1 + 2 , . ~ . , v ~ q ) .  This implies that 6 = 
= 

Z j ( t )  = yj(t - (q  - j)A), j = 1,. . * ,  q. 

Let 3 = {...,s"(t - l),s"(t),S"(t + l ) ,  . .a} and 2 = 
{. . . , s"'(t - l), S"'(t), Z'(t + l), e} be two distinct s se- 
quences and the associated v sequences be ij = {. . . , G ( t  - 
l) ,  G ( t ) ,  G ( t  + l ) ,  . . .} and V' = {- .  a ,  G'(t  - l ) ,  G'( t ) ,  G' ( t  + 
l), - . -} respectively and the associated symbol sequences 
be W = {. . . , L;(S"(t - l)), G(S"(t)), G(S"(t + l)), - . -} and W' = 
{. . , G(S"'(t-l)), G(S"'(t)), G(%'(t+l)), e} respectively. As- 
sume that ij and ii' are distinct for some code branches 

which all occur within A consecutive code branches. This 
assumption assures that whenever yj(t) # y$(t), we have 
yi(t  - kA) = d(t - kA) for k 2 1 and 1 L i 5 q. Then if 
j 2 2 and x j ( t+ (q- j )A)  = yj(t) # yi(t) = xg(t+(q-j)A), 
we have zj(t+(q-j)A) = y i ( t - ( j - i )X)  = d(t-(j--i)A) = 
zi(t + (q  - j ) X )  for 1 5 i < j. It follows from equation (2) 
that 

D2(i( t  + (q  - j )X), s"'(t + (q  - j ) A ) )  

t j = 1  

t j=1  

Example 3 : Let m = 3 and V = (. . ., (000), (000), 
. . .) and 6' = ( a .  ., (000), ."'(t) = (loo), G'(t + 1) = 
G' ( t+2 )  = ( l l l ) ,  (OOO), . . . )  . Let 2 1  = ~ 1 ~ x 2  = s 2 , 2 3  = 
s3. Set X = 3, the sequences G and ij' are converted into 
sequences s and s', which are respectively given by 

i(t) d ( t +  1) i ( t +  3) 
1 1 1 

e * *  0 0 0 0 0 0  
0 0 0  

... 0 0  0 0 0 0  

i ( t  + 4) d(t + 6) i ( t  + 8)  
1 1 1 
0 0 0 0 0 0 ... S1 

0 0 0 0 0 0 ... 
0 0 0 0 0 0 ... ] s2 

s 3  

and 
i'(t) i'(t + 1) i'(t + 3) 

1 1 1 
0 0 0  1 . .  0 0 0 

* * e  0 0 0 0 0 0  
. . e  0 0 0 0 1 0  

1 1 

3' = 

d'(t + 4) i'(t -t 6) i'(t + 8 )  

1 
0 0 1 1  l o * - *  s1 

0 0 0 0 0 0 s3 

Consider the 8PSK signal constellation. Then, we have 

1 1 0 0 0 0 - . ]  52 

D2(G(S"(t + 2)),G(%'(t + 2)))= S;(1,0) = 4, D2((;I(s"(t + 
4)),G(s"'(t+4))) = D2(G(S"(t+5)'),G(2(t+5))) = 6,2(1,0) = 
2, D2(W(Z(t + i )) ,G($'(t  + i))) = Sf(1,O) = 0.586 for i = 
6,7,8. Thus, wehaveD2(W,W') = 0 . 5 8 6 ~ 3 + 2 ~ 2 + 4 ~ 1 =  
9.758. 
Example 4 : Suppose that in Example 3, we set z1 = 
SI, 2 2  = ( s2 ,  s3) .  Then ij' is converted into the sequence 
s', where 

Y ( b )  B'(t + 1) B'( t  + 3) 
1 1 1 

a.* 0 0 0 0 0 1  
. e .  0 0 0 1 1 0  
. f *  0 0 0 0 1 0  

- 3'- [ 
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B'( t  + 4) B'( t  + 6) Z'(t + 8) 
1 1 1 
1 1 0 0 0 0  s1 

0 0 0 0 0 0 * e *  s3 
0 0 0 0 0 0 :::I s2 

With this, we have D2(G(Z(t + l)),G(Z'(t + 1)))= 
S;((lo),(Oo)) = 2, D2(i;l(qt + 2)),G(Z'(t + 2))) = 
S,z((ll), (00)) = 2, D2(G(Z(t + i)) ,G(Z'(t  + i))) = Sl(1,O) 
= S ? ( l , O )  = 0.586for i =  3,4,5. Thus, we have D2((w,Wf) 
= 0.586 x 3 + 2 x 2 = 5.758. 

The squared free distance of this TCM, DjPee is the 
smallest one of all the possible SED between any pair of 
two distinct symbol sequences & and 6'. 
Theorem : If the convolutional code C is not catas 
trophic, by taking X to be a large enough number, we have 

proof : We consider the following two conditions. 
(i) The sequences ?5 and 5' leave a common state in the 

trellis of C and then rejoin a common state within X con- 
secutive code branches. In this case, all the distinct code 
branches between 5 and ~ are within X consecutive code 
branches. Hence, the assumption for deriving equation (6) 
is met. Thus, D2 (is, 3) is no less than the righthand side 
of equation (7). 

(ii) The sequences T and T' leave a common state in the 
trellis of C and did not rejoin a common state within X 
consecutive code branches. Since C is not catastrophic, 
the number of distinct code branches, d(X), between 5 and 

within X consecutive code branches can be increased to 
a large enough value such that minyl-+,;{S~(yl,yi)} d(X) 
will be no less than the righthand side of equation (7) by 
taking A to be a large enough value. Since the number of 
distinct symbols between G and 5' is at least d(X), we see 
that D2(G, 5') is at least minylgV; (Sf(y1, d ) }  . d(X).  

By combining conditions (i) and (ii), we complete the 
proof. AA 

Note that for q =1, the proposed TCM becomes the 
Ungerboeck's TCM [6] which does not have a multilevel 
coding structure, and for q = m, the proposed TCM be- 
comes the TCM proposed by Hellstern [7]. 

111 Decoding 
To decode this TCM, the trellis for the convolutional code 
C must be used. If the number of encoder memory bits for 
C is v ,  then the number of states for the associated trellis 
is 2". Here, we set the truncation length of decoding the 
binary convolutional code C to be A. Let H = {. . . , Z ( t  - 

1), ."(t), Z ( t + l ) ,  . . .} be the received signal sequence, where 
Z ( t )  is the noise-corrupted form of a transmitted symbol 
S ( t ) .  At the (t+(q-1)X)-th time unit of decoding, ' .  . , Z( t+  
(q  - l ) X  - 2), I ( t  + (q - l ) X  - 1), and Z( t  + (q - 1)X) are 
already received. We assume that C ( t  - i) = (yl (t - i), . ., 
ym(t - i ) ) ,  has already been correctly recovered for i 2 A. 
The decoding procedure is as follows. 
Step 1 : For each of the 2P1 possible yl(t), we calculate 
the associated metric Myl(t), which is calculated by 

where S = (21,. , zq) and G(Z) E WO. 
Step 2 : For each of the 2pa possible y2(t),  we calculate 
the associated metric My,(t) .  Since yl(t - A) is assumed to 
have been correctly decoded, we can calculate My2 ( t )  by 

zz=ua(t )  min { D ~ ( z " ( ~  + ( q  - 2 ) ~ ) , i ; l ( ~ ) ) }  (9) 
=1=u1 (< -A)  

In general, for 1 5 j _< q ,  we have 
Step j : For each of the 2P2 possible yj(t), we calculate 
the associated metric My,( t ) ,  which is calculated by 

min 
=,=u,(*) 

=1=111 (+(,-1P),-.,=,-1 =y,-1 (+A) 

{D2(h(t + (n - ~ ) ~ ) , q ~ ) ) }  

(10) 
Step q+l : By summing one of the 2p1 possible Myl(t), 
one of the 2P2 possible My2(t ) ,  . . .  and one of 2Pq possi- 
ble MYP(t), we can compute one of the 2m possible branch 
metrics Mqt). 
Step q+2 : With . . . , MG(t-l), Mc(t), and the 2Y-state 
trellis for C ,  we can apply the Viterbi algorithm to recover 
C ( t  - A + 1) and G ( t  - X + 1). The decoding procedure is 
then back to step 1. 

Note that the first encoded message ii( 1) is recovered in 
the qX-th time unit of decoding. Compared to the TCM 
used by Ungerboeck [6] with the same trellis complexity, 
our TCM requires an additional decoding delay of ( q  - 1)X 
time units. 

IV Performance Analysis 
Using computer search, w e  find many good 8PSK TCM 
which are listed in Table 1. Each TCM in Table 1 has 
the coding rate of 2 information bits per symbol. We also 
find many good 16QAM TCM which are listed in Table 2. 
Each TCM in Table 2 has the coding rate of 3 information 
bits per symbol. In these tables, N represents the distance 
spectrum and NI represents the information-weight spec- 
trum, where N ( D 2 )  is the number of neighbors at an SED 
of D2 from a given symbol sequence and N1(D2)  is the to- 
tal number of information bits contained in all the N ( D 2 )  
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neighbors at an SED of D2 from a given symbol sequence. 

Code 2h 
q = 2  

11. (2.3.4)) 

Table 2: 16QAM TCM 

u = 3  D2 2.8 

7 5 5 5  N 35 
G =  

Table 1: 8PSK TCM 

Code 2i 
q = 2  

(1, (2,394)) 

I Code la I u = 2  

v = 4  Dz 2.8 
NI 14 
N 6  G = (  E ’ )  

6 4 5 1  

q = 2  
(1, (2,311 3 3 4  N 12 

0.1 . 
UncoacdQPSK + . 
UngbOeck.v-3 - . 

0.01 I Codcl0 -: 
Codslb -+- 

Figure 3: Simulation results for 8PSK TCM. 

Code 2a I v = 2  
2007 I 

( 0  0 0 1 1  
n n r r  

(172, (394)) ” = \ ;  ; 3 3 )  N 595 
D2 3.6 

957 
Code 2e v = 3  

(192, (3,411 
Code 2f v = 4  D2 4.0 

\ NI 2532 ( 3  0 3 1 \  
. o n 9  

Code 2e: I v = 2  

coded QPSK, the 8-state 8PSK TCM with q = 1,2 and 
3 can achieve coding gains of about 3.0 dB, 3.5dB, and 
3.5 dB respectively at BER = low6. Moreover, compared 
to the uncoded 8AMPM, the 4-state l6QAM TCM with 
q = 1,2,3 and 4 can achieve coding gains of about 3.0 dB, 
3.3 dB, 3.8 dB and 3.8 dB respectively at BER = 
Some theoretical values for BER calculated by using the 
formula 

(11) 
1 
r 

BER M - . Nr(D2). Q(D/2a) 
D 

are given in Table 3. Theoretical values listed in Table 3 are 
somewhat lower than the simulated values. This outcome 
is probably due to the phenomenon of error propagation. 
In general, we can see that very good error performances 
for AWGN channels can be achieved by using the proposed 
TCM. The price that we have to pay is the increased de- 
coding delay and the effort of calculating branch metrics. 
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0.1 
UomdCdSAMpM * 

Code l b  
Code l e  

18-07 ‘ I 
7 a 9 10 11 12 13 

EblN0:dB 

Eb/No (dB) Simulation Analysis 

6.49 6.7 x 4.3 x 
6.99 1.2 x 10-6 5.0 x 10-7 

Figure 4: Simulation results for 16QAM TCM. 

I I I I Code 2a I 8.73 I 2.6 x 1 9.6 x 1 
I I I I Code 2d I 8.73 I 3.4 x 10-6 I 9.8 x 10-7 1 
I I I I Code 2n I 9.23 I 2.2 x 10-6 I 8.9 x 10-7 I 

I - I I 

V Conclusions 
The multilevel and single-stage TCM scheme proposed in 
this paper is obtained by introducing a multilevel delay 
processor to the TCM designed by Ungerboeck. This is 
in fact equivalent to introducing new parameters for de- 
signing TCM. With various choices of decoding delays and 
various numbers of trellis states, we can obtain many useful 
TCM with various error performances. 

Although the analysis of the proposed TCM is concen- 
trated on AWGN channels, it is expected that the pro- 
posed TCM with large q are good for the Rayleigh fading 
channels since large q results in large minimum symbol 
distance. 
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