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Abstract - In a fab with heterogeneous machine groups, the 
number of scheduling policies grows in a combinatorial way 
because each machine group has its specific dispatching 
d e s .  In tbis paper, we design a fast simulation 
methodology by an innovative combination of the notions of 
ordinal oplimizalion (00) and design of ekpenmentr (DOE) 
to efficiently select a good scheduling policy for fab 
operatinn. Instead of finding the exact performance among 
scheduling policies, o w  approach compms their relative 
orders of performance to a specified level of confidence. 
The DOE method is exploited to largely reduce the number 
of scheduling policies to be evaluated by the 00-based 
simulation. Simulation results of applications to scheduling 
wafer fabrications show that mosl of the 00-based DOE 
simulations reqnire 2 to 3 orders of magnitude less 
Computation time than those of a traditional approach, and 
the speedup is up to 7,000 times in certain cases. 

I. INTRODUCTION 

Major fah scheduling problems include how wafers 
should he released into a fab and how they should he 
dispatched among machines for processing. A popular 
practitioners' approach for scheduling the production is to 
select from the many empirical scheduling rules available 
for IC fabs. Scheduling rules for each machine group 
should are designed based on the specific characteristics 
and operation goals of the machine group. Empirical or 
heuristic rules are collected for individual machine groups. 
The industry of wafer fabrications has indicated a strong 
need for an efficient simulation tool for selecting a good 
scheduling rule from the existing libraly. 

Rule selection by using the traditional simulation 
approaches is not fast enough in computation for 
short-term scheduling of fah operations. Recent research 
has shown that comparing relative orders of performance 
measures converges much faster than the performance 
measures themselves do. This is the basic idea of 
ordinal comparison (OC). OC can be used as a means 
for solving scheduling rule selection problems if OUT goal 
is to find a good scheduling policy rather than to find an 
accurate estimate of the performance value of a 
scheduling rule. A technique called optimal computing 
budget allocation (OCBA) that can further reduce 
computing time when used in conjunction with 00 is 
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adopted in our simulation methodology. Hsieh et al. [ 5 ]  
has applied 00 and OCBA techniques to dynamic 
selection of scheduling rules for fabs and has shown its 
potential for real applications. However, a homogeneous 
set of dispatching rules among machine groups is 
assumed in [SI. As the number of candidate policies 
grows in a combinatorial way with the number of machine 
groups, a brute-force application of the OC and OCBA 
method to selecting a good scheduling policy is still 
infeasible. 

The method of design of experiments (DOE) has 
been effective in reducing the number of options to he 
evaluated. DOE methods are used to experiment with 
various combinations of the important design factors for 
the purpose of identifying the particular combination that 
optimize certain design criteria or performance measure. 
An efficient class of DOE methods, fractional factorial 
design of experiments (FFDOE), has been proposed for 
handling experiments with several design factors 
simultaneously [3, 71. With the assumption that high 
order interaction effects on a performance function of 
interest caused by several factors are not significant and 
negligible, performance evaluation of a large portion of 
redundant options can he saved. 

In this paper, we design an innovative combination of 
the DOE and 00 methods and investigate its application 
to efficiently selecting good rules for scheduling wafer 
fahs. Section I1 describes and formulates scheduling rule 
selection problems. The notions of OC and DOE that 
can significantly reduce the required simulation time are 
described in Section 111. An efficient simulation 
methodology, which combines the OC technique and the 
DOE method is designed in Section IV. 'Rule selection 
experiments among machine groups are conducted in 
Section V. Section VI concludes this paper. 

11. SCHEDULING RULE SELECTION PROBLEM 

A fah schedulingioperation policy is a cohbination of 
a wafer release policy and dispatching rules for individual 
machine groups over a specific time horizon. Due to the 
diversity of equipment in a fab, scheduling rules for each 
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machine group should be designed based on the specific 
characteristics and operation goals of the machine group. 
Empirical or heuristic scheduling rules are collected for 
individual machine groups. Such rule collections are 
built into a scheduling rule libraty of a fab. Suppose that 
there are Mmachine groups in a fab and wafer release and 
the dispatching of each machine group have D candidate 
rules, there are a total number of (D)"" scheduling 
policies, which grows in a combinatorial way with the 
number of machine groups. To capture the inherent 
complexity of  a production line, simulation is often 
adopted to evaluate performance measures of operation 
policies. However, it takes a formidable amount of 
computation time to select a good policy by using 
brute-force simulation to evaluate these scheduling 
policies. 

Suppose we want to compare a total of R policies, 
which are indexed by i, i = 1,  2 ,  ..., R. Denote h(Oj;  w) 

as the performance measure of a policy i, where Oi is a 
vector of design parameters of policy i and w is a random 
vector that represents uncertain factors in the system. 
Because of the inherent complexity of the system, discrete 
event simulations are adopted to estimate E , [  h(O, ; w )  ] 
by taking n independent replications of the simulation and 
approximating the expectation as 

1 "  
n j= i  

Ew [ h(Oi ;w) ]  = - x h ( O , ; w j ) ,  

where wj, j=l .... n,  are the j-th sample of w, and 
h(Oj; w,) is obtained from j-th simulation replication. 

In general, the rate of convergence for estimate 
E, [ h(Oi; w)] by using traditional simulation methods is 

at hest O i l / & ) .  The large n required for a good 
approximation implies that each policy must he simulated 
with a large number of replications, which translates to 
long computation time. Moreover, the number of 
policies R grows in a combinatorial way with respect to 
production control factors. Even the number of 
simulation replications n for each policy is small, the 
simulation time required for the enormous number of 
policies is formidable. 

Ill. ORDINAL COMPARISON AND DESIGN OF 
EXPERIMENTS 

Motivated by the deficiencies of applying traditional 
simulation approaches to scheduling policy selection 
problems, the notions of ordinal comparison (OC) and 
design of experiments (DOE) are adopted which are 
known methods for significantly reduction of the required 
simulation time. 

A. Ordinal Comparison and Optimal Computing Budget 
Allocation 

Let option b be defined as 
b arg min E, [ /I(@(; w) ] 

Definition 1. Define correct selection-I (CSJ as the event 
that the selected option b is actually the best option. 
Define the confidence probability P{CSI) P( The 
current top-raking option b is actually the best option }. 

Instead of finding the optimal option, the approach of 
OC compares the relative order of perfonnance among 
options to a specified level of confidence. By using OC, 
the probability P{CSl] may converge at an exponential 
rate while E w  [ h(Oj ;w)  ] may converge slowly. A 
critical issue is the estimation of P{CSI}. Using a 
Bayesian model, [l] developed an effective estimation 
technique, where 

P(CS,}o fi P ( J ,  < ?(]=Approximate Probability 
l= IJ*b  

of Correct Selection-l (APCS,) 
J ,  denotes the random variable whose probability 
distribution is the posterior distribution of the expected 
performance for option i under a Bayesian model. We 
shall use APCS, to approximate P ( C S , } .  

To further enhance the efficiency of OC, the 
technique optimal computing budget allocation (OCBA) 
intelligently determines the best number of simulation 
replications among different options as simulation 
proceeds. Intuitively, to ensure a high confidence 
probability, a larger portion of the computing budget 
should be allocated to options that are potentially good 
options. A critical issue is the determination of a set of 
"promising" options. The "promising" options are 
options that can maximize the improvement of APCS, if 
they are further simulated. Chen et al. offer a simple and 
effective way to solve the problem [2]. . 
B. Design ofExperiments 

In this paper, an efficient DOE method, fractional 
factorial design of experiments (FFDOE), is adopted to 
handle the combinatorial complexity of scheduling rule 
selection problems. With the assumption that high order 
interaction effects on a performance function of interest 
caused by several factors are insignificant, the FFDOE 
method exploits orthogonal arrays (OAs) to reduce the 
number of necessary options to be evaluated [3, 71. The 
first step is to identify factors that affect the performance 
function of interest and choose different levels of design 
parameters for each factor. An OA is then used to 
determine a small set of test samples for evaluation by 
simulation. Denote an OA as OA( nS,nF,nL,s ), where 
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ns is the size of the test sample set to be performed, nF 
is the number of factors, nL is the number of levels of 
each factor, and s is the number of columns where we are 
guaranteed to see all the possible combinations of levels 
an equal number of times and is called strength [4]. 
Simulation runs are conducted for the set of test samples. 
A performance estimation model of all options is built by 
using the simulated performance measures of the OA 
samples. Details of performance estimation axe 
described as follows. 

A regression model is commonly used to estimate the 
performance surface for a factorial design. Since factors 
of scheduling rule selection have discrete choices without 
quantitative relationship, general regression models 
cannot be directly applied. Let us define some notations. 

the sample mean of option i, 
h, = MO, ; w j )  the j-th sample of option i 

. "  the estimated performance measure hi - h ( O , ; w )  of option i 
S( "s 1 

0, option i 

the orthogonal set of test samples 
the design parameter of factor j in 

With the assumption that third-factor and higher 
interaction effects are negligible, the mathematical model 
of the performance measure is thus represented as 

where hp(6,;  w )  is the performance effect (main effect) 

of h ( O i ; w )  caused by factor p .  h,q(6,0,;w) is the 
two-factor interaction effect caused by factors p and q. 
and E is the error tern. The method of least squares is 
then used to fit the model with the simulated performance 
measures of OA samples. 

IV. DESIGN OF 00-BASED DOE SIMULATION 

We now present an innovative combination of the 
aforementioned 00 and DOE methods into an efficient 
methodology for the scheduling rule selection problem. 

A. Design Overview 

As shown in Figure 1, our methodology consists of 
two phases. Phase I exploits DOE technique to estimate 
performance measures of all policies with a small set of 
policies simulated. Top-ranking policies are screened 
for futtber evaluation under a new OC criterion. Phase 
I1 directly applies OC+OCBA techniques to top-ranking 
policies screened out by phase I and identifies a good 

policy for fab operation. This two-phase methodology 
will be referred to as the 00-based DOE method 
hereafter. 

In the phase I application of DOE, to shotten the 
simulation time for each scheduling policy in the OA, we 
define a new correct selection' criterion, CS2, to screen 
top-ranking policies for further simulation. Different 
from CS,, CS2 considers policies of which the 
performances are not worse than a fraction of that of the 
best policy. The compromise in optimality may lead to 
substantial reduction in simulation time. 

The probability of CS2, P{CS2}, determines how 
accurate the performance estimates of the OA policies 
should be. Generally speaking, the more simulation 
replications for the OA policies the better in performance 
estimates of all policies. P{CS2}  is derived based on the 
probability distributions of the estimated performance 
measures of all policies. Detailed design of the 
option-screening criterion is described as follows 

L 

Figure I.  Flowchart of the 00-based DOE algorithm 
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B. Design of Option-screening Criterion 

Let us first give the formal definitions of the new 
OC criterion CS2and P{CS2}. 

Definiiion 2. Define correct selection-2 (CS,) as the event 
that the true performance of the observed rank-r option is 
not worse than ,fl fraction of the performance of the true 
hest option. 

estimated by 

Define P{CS,(r,P)} =PI{ CS2 occurs }. 

Similar to the estimation of P{CSI} ,  P{CS2(r,fl} is 

P{CS~(~,P)} fiP{y, >kj} =APcs~(~ ,P) ,  
i=l,,+, - 

where the posterior distribution for option i, J i  , is 

estimated by estimated mean, h(O, ;w) ,  and estimated 

variance, L?:, P{CS2(r,P)}, which is approximated by 
APCS2(r,P), is used as the option-screening criterion, 

Value estimates of both mean and variance of  
performance measures are required parameters for 
APCS2(r,P). Our simulation study shows that the 
variance of a scheduling policy depends highly on the 
scheduling rules. The frequently used common variance 
assumption [3] is not applicable. Without attempting to 
find accurate estimates of variances, a conservative 
estimation approach is taken, where the variance of an 
un-simulated policy is estimated by the maximum 
residual variation of simulated policies so that the 
confidence probability is not overestimated. 

The residual variation of a performance model is 
composed of two parts, that due to pure error among test 
samples (replications) and that due to model lack of fit [3] 
The variance of h^, is then estimated by 

where S i  is the sample variance of policy k. The 
variance of an un-simulated policy i corresponding to the 
estimated performance measure hi is estimated by 

repair are all exponentially distributed. A lot consists of 
24 wafers and is the unit of processing and transportation. 
With a release rate of 0.52 lotsthour, utilization of the 
machine groups are mostly greater than 90%, which 
captures the loading situation of wafer fabs. Bottleneck 
machine group in this model is Station 1, whose 
utilization rate is 94.2%. Station 8 corresponds to a 
furnace machine group and is a batch-processing machine 
group, where the loading capacity is 6 lots per batch. 
We also deduce that Station 1 corresponds to a 
photolithography machine group, which encounters the 
most complicated re-entrant flow among all stations. 
Due to quality issues, once the photolithography machine 
of the first layer of a lot is decided upon, the following 
layers of the lot must be limited to exactly the same 
machine of Station 1. Detailed model parameters of 
FAB are given in Table 1. 

In our experimental study, three performance indices 
are considered mean cycle time (MCT), variance of cycle 
time (VCT), and smoothness of a fabrication line (SM), 
which are among the most frequently used fah 
performance indices. There are four sets of dispatching 
rules and a set of wafer release policies, each having four 
options, as listed in Table 2. There are therefore 4’ 
( ~ 1 0 2 4 )  scheduling policies. The four sets of 
dispatching rules are lot assignment policies for 
photolithography (LAP-PH), dispatching rules for general 
machine groups (LDR), dispatching rules for furnace 
machine group (LDR-F), and dispatching rules for 
upstream of furnace machine group (LDR-UF). 
LAP-PH policies dedicate a lot to a photo machine for the 
purpose of workload balancing. LDR-F rules select a 
stage with certain criteria and choose a batch o f  lots from 
the stage. SAFl and SAF2 are dispatching rules 
designed for avoiding furnace machines from starving. 

The number of simulation runs for test samples in an 
OA is set to 10. The number of promising options, r, is 
set to 16, the fraction parameter, ,fl, is set to 0.97, and the 
confidence probabilities are all set to 0.9. 

Table 1. Plant Data of FAB 

V. APPLICATION: SCHEDULING POLICY 
SELECTION 

A full-scale single product fab model (named FAB) 
modified from Lu et al. [6] is adopted in the simulation 
experiments for evaluating the 00-based DOE method. 
It involves 12 failure-prone machine groups, each having 
one or more identical machines. There are 60 operation 
stages in the entire process flow. Processing times at 
each station, times between machine failures, and times to 

4 General 1 I 1.800 200 I 1 9 4 . 1 %  
5 General I 2 0.900 200 I I 94.1% 
6 G ~ ~ C W I  2 3 i.zno 2no I I 94.1% 
7 General I I 1.800 200 I 1 9 4 . 1 %  
8 Furnace 4 8 4.800 IS0  5 6 86.4% 
9 General I 3 0.580 200 5 I 92.9% 
10 Gencral 9 5 3.000 130 5 I 90.4% 
I I  General 2 3 1.100 200 5 I 88.2% 
I 2  General 2 I 2.500 200 5 I 67.4% 

’ MPT Mean Processing Time (by hours) ’ MTBF Mean Time behueen Failures (by hours) ’ MTTR: Mean Time to Repair (by hours) 
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Rule Se __ 

WRP 

LAP-PI 

LDR 

- 

LDR-I 

LDR-L 

Table 2. Scheduling rules 
De~criptlon 

teranival times of lots are constant. 
orkload rcgulation release for one bottleneck 
stem. When the expected work in fab for bottleneck 
achine drops to C hours, then release a new lot. 
teramval times of batches of lots are constant, 
?ere the batch size is B. 
brkload regulation release for one bottleneck 
stem. When the expected work in fah for bottleneck 
achine drops to C hours, then release a batch of lots, 
here the batch size is B.  
~ O O S C  a machine with least dedicated WlPs in the 
-entrant line. 
loose a machine with least total workload in the 
-entram line. 
mose a machine with least dedicated WlPs among 
mm machines. 
ioose a machine with least workload among photo 

hoose the lot with smallest ( n p  / A p  + c, -(,) , 
here p represents the index of product type, ni. is the 
auen~e humber of the lot under consideration. C. i s  
e mean cycle time, 4 is the throughput rate. and 5. is 
e estimate of the remaining cycle time from buffer i. 
hoose a stage with the lanest deviation of completed 
oyes from-the desired ~ o v c s .  Then choose from 
e stage a lot which is released into the fah the 
srliest. 
hoose a stage i according 10 the following prionties: 
I N,(t)>G, and N,,,(t)<F,+,; 

II:  N, (f) < z, and Nj+, (I)  < F,+l ; 
111: N r ( t ) > Z ,  and N,,,(f)>G<+>; 

IV N,(I) < G, and N,+l(I) > z,,, , 
here N , ( t )  is the WIP at time I at step i ,  F, is the 
erase WIP at s t m  i. Choose a lot with the same 

- . 
teue and then choose a batch of lots from the stage 
ith least slack time. 
home a stage that has the lot with least slack time 
id then choose a batch of lots from the stage with 
ast slack time. 
home a stage with longest queue and then choose a 
itch oflots from the stage with least slack time. 
hoosc a Stage that has the lot, which arrives the 
,achine group at the earliest time, and then choose a 
itch of lots from the stage with least slack time. 
the queue lengths of all downstream furnace stages 
e smaller than a threshold, select a stage that has the 
rgest sum of  lots at current stage and downstream 
#mace stage, and then choose a lot from the stage 
sing FIFO. If not, use FIFO. 
the queue lengths of all downstream furnace stages 
E smaller than a threshold, select a stage that has the 
Nost lots at downstream stage, and then choose a lot 
om the stage using FIFO. If not, use FIFO. 
s FSMCT in LDR. 
s FIFO in LDR. 

A .  Long-term Performance Analysis 

This set of experiments is designed to study the 
long-term MCT, VCT, and SM performance of individual 
scheduling policies. A simulation run of 8.2 years 
starting with the fah empty is conducted for each 
scheduling policy. Figure 2 shows the main effects of 
the five factors that affect ,the three performance indices. 
FSMCT dispatching rule along with LTWL lot assignment 
policy are superior to other rules in MCT reduction. 
Dispatching rules have significant influence on VCT and 
SM across all machine groups. 

B. Effectiveness of the 00-based DOE Simulation 

To assess the effectiveness of the 00-based DOE 
method, we estimate the long-term MCT, VCT, and SM 
performance of individual scheduling policies. Table 3 
summarizes the ranks of simulated performances of the 
estimated top-10 policies. When modeling with only 
main effects, one ofthe estimated top-IO policies is within 
the simulated top-IO policies under MCT and VCT 
performance criteria. Great improvement of the estimate 
on relative performance is observed when two-factor 
interactions are modeled. It is inspirational that 6 of the 
estimated top-I0 scheduling policies are within the 
simulated top-I0 polices under MCT performance index. 
Four of the estimated top-10 policies are within simulated 
top-IO policies under SM performance index with only 
main effects modeled. This indicates that two-factor 
interaction effects of SM are indeed negligible. 

C. Computational Eficiency 

To examine the efficiency of the 00-based DOE 
simulation, 8 sets of short-term rule selection experiments 
are conducted and traditional simulation approach serves 
as a benchmark. Computation times of the two 
simulation approaches are listed in Table 4. Time saving 
factor is defined as the ratio of simulation replications of 
traditional approach to that of the 00-based DOE 
approach. In Exps. 1 and 2, traditional simulation 
approach requires up to 7000 times more computation 
time than the 00-based DOE approach. But in Exps. 5 
and 6,  the time saving factors are about 20. This is 
because MCT performance of policies converge faster and 
require fewer simulation replications to obtain a good 
approximation. Most of the 00-based DOE simulations 
require three to four orders of magnitude less computation 
time than the traditional approach. 
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Figure2. Main effects of rules among machine groups 

Table 3. True rankings of estimated top-10 policies 
Est. 
Rank 

I 
2 
3 
4 
5 

~ 

Modeling wifh main efiects Modeling with main effects 
and two-factor interactions 

MCT VCT SM MCT VCT 

18 0 1 
43 25 
27 23 
29 40 56 M 28 

6 77 44 62 23 
7 ao 37 42 I60 29 
8 106 49 63 144 59 
9 71 99 32 135 113 
IO 136 104 93 I76 120 

Table 4. Efficiency of the 00-based DOE simulation 
Enp, Performanee Simulation Replications Time saving 

Traditional 
a roximated 00-baaed DOE Factor 

I VCT 7,023,865 972 7,226 
2 VCT 5,520,734 783 7,051 
3 SM I , O Y Y , ~ I ~  576 1,909 
4 SM I .994 606 43s 4~585  .~ ~~ 

.~ ~ ~, . ,~~~ ~~ 

5 MCT 22,524 858 26 
6 MCT 20,583 1,053 20 
7 SM 381,547 546 699 
8 SM 476,888 417 1,144 

VI. CONCLUSIONS 

Motivated by the problem of scheduling policy 
selection for semiconductor wafer fabs, we have designed 
in this paper a two-phase methodology of fast simulation. 
The methodology is an innovative combination of ordinal 
optimization techniques, OO+OCBA, in phase 11, and 
design of experiments in phase I. The innovation of 
phase 1 lies in a new definition of correct selection for 
finding a set of good enough orthogonal array and a 
regression model for estimating the performance surface. 
Top ranking policy options screened out by phase I are 
then'further simulated by OO+OCBA in phase 11. Not 
only is the number of simulation options reduced to a 
manageable level but also the simulation time for 
evaluating selected options largely shortened. 
Simulation results of applications to scheduling a fab 
show that most of the 00-based DOE simulations require 
2 to 3 orders of magnitude less computation time than 
those of a traditional approach, and the speedup is up to 
7,000 times in certain cases. The methodology 
developed by this paper is complementary to that of [ 5 ] .  
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