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Abstract

Computer simulation is currently the most powerful ap-
proach in evaluation of the error rate performance of a
digital transmission system. Classical Monte Carlo (MC)
method is the fundamental method, but requires a very
large sample size. The importance sampling (IS) tech-
nique has been proposed to significantly reduce the re-
quired sample size for estimating the bit error rate (BER)
of binary systems. In this paper an improved approach for
this problem is presented, in which the BER and symbol
error rate (SER) of binary as well as multilevel systems
are discussed for both classical MC and various IS tech-
niques. Numerical simulation results are further provided
to support the discussion.

1 Introduction

Evaluation of the error rate performance of a digital trans-
mission system is the most basic problem in communica-
tion system design. The concerned error rate can be bit
error rate (BER), or symbol error rate (SER). For systems
which are not too complex, analysis is always helpful to
estimate the error rate performance. Yet simulation is the
most legitimate method for obtaining the accurate esti-
mate, which can then be used to verify the analysis. For
systems which are too complex to analyze, simulation is
in fact the only approach to obtain the detailed perfor-
mance.

The fundamental method of estimating the error rate
from a simulation is the classical Monte Carlo (MC)
method (1], which consists of basically counting errors.
The more advanced techniques for simulation include the
“variance-reduction” methods [1], in which importance
sampling (IS) is one of the most attractive methods to be
used in simulating digital transmission systems. In the
last decade, substantial progress has been achieved in the
simulation of BER of binary systems using IS techniques
[2, 3, 4].

In this paper, we extend the formulation for both clas-
sical MC and IS techniques to include BER and SER of
multilevel systems based on symbol by symbol observa-
tion. A new IS technique and analysis of BER and SER
based on the extended formulation are also presented. In
the following, we first briefly summarize the previous work
on BER of binary systems in Section 2 for development
purposes. The extended formulation is then presented in

Section 3. In Section 4.1 the conventional IS technique
for BER of binary systems is shown to be applicable in
simulating BER and SER of M-ary systems, and a new
improved IS technique is presented in Section 4.2. Numer-
ical results for all the discussed techniqus are provided in
Section 5. Finally the conclusion is given in Section 6.

2 Summary of Previous Work

We shall very briefly summarize in this section the pre-
vious work on transmission performance simulation using
vector channel model for further developments in this pa-
per. A discrete-time vector channel model [5, 6] for binary
PAM is depicted in Figure 1. Let {Xi} be a sequence of
random symbols such that the outcome z; € X = {z|z=
+1}, and let g = {go,g1,.-.,9,} be the normalized chan-
nel impulse response such that Y i=09? = 1, then the
channel output sequence is {Zx} = {Xi} * g + {N:},
where ‘¥’ stands for convolution and N}, is additive white
Gaussian noise (AWGN) with variance 2. The system
is intersymbol-interference (ISI) free if v = 0. The sys-
tem has small to moderate ISI if ¥ > 1 and go domi-
nates over all g;,1 < i < v, where v is called the ISI
span. The appropriate detector for this system is simply
a threshold detector with the threshold set at V3. The
detector decides X, = —1 if Z; < Vi and Xp = 1 oth-
erwise, where X, is the estimate of X, at the detector
output.
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Figure 1: Vector channel model for PAM and QAM trans-
mission systems.

If we assume P, = P,;, where P,;,i = 0,1 are the error
rate when 0 and 1 are transmitted, then

P, =Po= /: " ho(aa)fz, (20) dox = Elho(z)] (1)

where P, is the BER, fz,(z:) is the probability density
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function (p.d.f.) of Z;, and

m(a)={ § 22U 2)

The classical MC estimator of P, is
L V-1
b == 3
= g:% ho(z) (3)

where N is the number of simulation samples in classical
MC simulation. Let o}, be the variance of the classi-
cal MC estimator B,, Gaussian approximation will show
that (P, — 1.960mc, P. + 1.960mc) is a 95 percent confi-
dence interval for P,, and it requires approximately 10 /P,
samples to achieve an estimator variance o3, = P2/10
and thus an interval (13, —0.62P,, P, + 0.62P,) of 95 per-
cent confidence [2]. For a typical error probability of, say,
10-5, classical MC requires 107 samples per simulation
run, which is impractical.

The IS technique is a variance-reduction method that
can obtain a good estimate of P, with dramatically less
samples. It simply consists of introducing another p.d.f.
f3, (&) which is preferable for sampling purposes. That
is, we rewrite Equation (1) as

Po= [ ho(mn)us, (25, () dos = Blho(ea)og, ()]
4
where wy (2) = fz,(2x)/f,(2) is the likelihood ra.tio?

or “weight” of fz,(z:) with respect to f3, (z:), and P, is
now estimated by

R 1 N*-1
Br=n Y hom)us, () (5)
k=0

where N* is the number of simulation sample in IS sim-
ulation. If 13: is also approximated by Gaussian distri-
bution, let of; be the variance of the IS estimator B2,
then if o = o}, = P2/10, the confidence interval will
be (P, — 0.62P,, P, + 0.62P,), which is identical to that
of the classical MC with the same estimator variance. An
efficient IS technique should achieve o = P2/10 with N*
as small as possible, and the efficiency of an IS technique
is measured as ryc/1s = N/N* with ofs = o3¢

Two IS techniques for BER of binary systems have been
proven to be very successful, one is the conventional IS
(CIS) proposed by Shanmugan [2], the other is the im-
proved IS (IIS) proposed by Lu and Yao (4]. Instead of di-
rectly generating the new p.d.f. Iz, (2z), both techniques
generate a new noise p.d.f. f, (nx) to indirectly change
the p.d.f. of Z;. The CIS technique [2] is to generate the

zero mean Gaussian noise with a new variance 02 > o2,
i.e.,

* —_ 1 _"'_2
fin(m) = Zo— exp(~7%). ©)

This techniques is very robust, and will be refered to as
CIS in all the following discussions. The IIS technique

[4] consists of translating the noise p.d.f. by a constant c,

e FH ) = fan (me — <), (7)

This technique is even more efficient than CIS, and will
be refered to as IIS in all the following discussions.

3 Reformulation

As we summariged in Section 2, only BER of binary sys-
tems is seriously considered in the previous literature.
However, many communication systems used today em-
ploy multilevel modulations. Hence we shall reformulate
the problem for 2 more generalized analysis.

3.1 Vector Channel Model

The vector channel model for M-ary PAM is basically the
same as that of binary PAM depicted in Figure 1, except
that the outcome z € X = {z|z = +1,43,...,+(M -
1)}. The appropriate detector here is now the symbol
by symbol dectector. Let D(z) be the decision region of
z € X, the detector decides that X; = z if Z; € D(z).
The decision regions for M = 2 and 4 are plotted in Figure
2 (a) and (b). Note that the minimum Euclidean distance
(ED) of these systems is 2go.
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Figure 2: Decision regions for various PAM and QAM
constellations.

The performance measures we consider in this paper
are both BER and SER for all M. The SER is defined as

P, = P[Xk # Xi) (8)

where X, is the estimated symbol at the detector output.
The classical MC simulation is simply counting the rel-
ative frequency of the symbol error. Define the symbol
error indicator function

Io(en ) ={ § 272 ®)

and then we have

P, :E[IE(zk,ik)] (10)

the expectation of the indicator function.

For binary systems, i.e., the case of M = 2, SER is the
same as BER. For the case of M = 2™, m > 2, BER can
be obtained by identifying the number of erroneous bits
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in the erroneous symbols. This can be expressed by the
decomposition of the symbol error indicator

IE(Zl,,:Ek) = Z Iz,:'(zklik) (11)
z#z!

where

o 1 2x) = (z, 2’
Leteni)={ § GRi=@)

is the indicator function of the symbol z € X being
transmitted but the symbol 2 € X being detected, and
(zx,21) is the 2-tuple of the actually transmitted and es-
timated symbols, and ‘x’ stands for Cartesian product.
Let b(:) be the binary representation of a symbol, and
dg(b(z;,b(z’)) be the Hamming distance between the bi-
nary representation of z and 2, (z,2') € X x X. Then
the BER is

Pb =F [Z &b(mn):m[z,z'(zhik)jl (13)

Tz’

where m is the number of bits of the binary representa-
tion.

For QAM, the above model for PAM still applies, ex-
cept that the real symbol X; is replaced by the com-
plex symbol X§ because two orthogonal carriers are used,
where X§ = X} + jX, X{ € X°, where X® is a two-
dimensional constellation, the real-valued output 2 re-
placed by the complex-valued output Zg, and the real-
valued noise Nj by the complex-valued noise Nf. The
estimated symbol X} is also replaced by the complex sym-
bol X - The two-dimensional constellation 16-QAM its
decision regions are plotted in Figure 2 (c¢). For nota-
tional convenience, we will use the notation of the PAM
systems to refer to both the PAM and QAM systems in
the following discussion.

3.2 Classical MC Simulation

With a slight abuse of notation, we will use the den-
sity function in the generic sense for both the “probabil-
ity density function” of the continuous variable and the
“probability mass function” of the discrete variable. Let

Xl: :{Xk—V)Xk—v+1"~'ka} (14)

be the vector of consecutive random symbols of length
v+ 1 ending at time k, the SER can be expressed as

P, = E[Ig(es,m)] = E[lp(zs,3).  (15)

The classical MC estimator of the SER is then the sample
mean

1 N-1
P, = N §) Ig(zk,zk) (16)

which is simply the relative frequency of symbol errors.
Likewise, the classical MC estimator of the BER is

N-1 !
Pb = % Z Z ﬂ(zn)q',MI:,z'(:mn ik) (17)

k=0 z#£z’

Since the BER estimator is based on the decomposition
of the SER estimator, we will focus on the SER estimator
in the following.

3.3 IS Simulation

To apply IS technique, we generate the noise N by a
density f, (n:) different from fw,(ni). Let

wiy, (ne) = fu, (ne)/ i, (me) (18)

be the “weight”, or “likelihood ratio” of . (ne) with re-
spect to fy, (nx). Then Ig(zx,2:)w}, (n2) is an unbiased
indicator of P, under the new density fa,(nt), since

E(IE(zk,ik)w,’v_(nk)) = P,. (19)
Likewise,
Z M)’Il(—z'))]: o (zx, E1)wh, (nk)
£z’ m '

is an unbiased indicator of P,. The IS estimator of P, is
then
N°-1

= ’; Ie(zs, &4)wy, (m) (20)

and the IS estimator of P, is

N*-1
- 1 d(b(z), b(z’ -
B = e E Z _H%Iz,z'(zhzk)wln(nk)-

k=0 z#z'

(21)

Again, because the IS BER estimator is also based on the
IS SER estimator, a good IS technique for SER will be a
good IS technique for BER. We will thus concentrate on
the IS techniques for SER in the following.

4 Two IS Techniques

Because of the decision regions for M-ary systems in Fig-
ure 2 and the fact that all symbols are assumed to be ap-
proximately equally probable, the new noise density func-
tion used in IS should be symmetric with respect to the
vertical axis to minimige the estimator variance. Thus,
only the CIS method can also be used here for M -ary
systems, while the IIS method can not be directly used
because it is not symmetric. However, as described be-
low we can modify IIS to obtain a new technique to be
used here. In the following both these techniques will
be discussed first assuming an ideal ISI free channel for
analytical tractability.

4.1 The Conventional Importance Sam-
pling (CIS) Technique

Case A: Binary PAM
This has been analyzed in the work of Lu and Yao (4]
_with results summarized below: the optimal value of o,

is
9
Ouopt X (f1+07 4 ﬁ”‘ (22)
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and the efficiency of this technique as compared to clas-
sical MC is

1 1
"'MC/CIS ~ ZUexp(F - 5) (23)

which implies a dramatic decrease in the required simu-
lation samples when 025 ., = o3c.
Case B: Multilevel PAM and QAM

For multilevel PAM with M = 2™, m > 2, if all the

symbols are equally probable, we have a very similar re-
sult
1

o 1
T™C/CIS & 1—_2'?;;*31(?(? - 5)
and the optimum value of o, is also given by Equation

(22).
For 4QAM we have

(24)

1 5 49
- —o? —ot
Toopt N \[5 + 707 + 337 (25)

and
, ~ o3d exp( 1 1)
—exp(— — ).

Me/c1s ¥ explay 5 — 5

For other QAM constellations, if the minimum ED is 2,
the optimum value of o, is also approximately given by
Equation (25), and the efficiency depends on the particu-
lar constellation used, and lies between one and two times

that of 4QAM.

(26)

4.2 A New Improved Importance Sam-
pling (NIIS) Technique

To achieve an IS technique as efficient as possible, we
should have the weight fw, (ns)/ I, (n+) as close to con-
stant as possible in the important region[1], i.e., the re-
gion for Ig(z,£:) = 1. But at the same time, S (ne)
must be a density function that is easy to generate, and
the resulting technique must be robust. These are obvi-
ously contradicting constraints. The CIS technique dis-
cussed in Section 4.1 is robust, and the noise density func-
tion is easy to generate, but the weight

. —_,2
an(nk)/f;Vu(m') = %up(az;;k_z
1

(27)

is not so close to constant as it decays exponentially with

the n?, where
[ o2

To improve on this, we propose here to use a new noise
density

() = %fNﬁ("’k +e)+ %fN»("’k -9 (29)

where c is a parameter to be optimized. As plotted in
Figure 3, the density is derived from the Gaussian density
simply by a symmetric shift, hence is very easy to generate

and the resulting technique will be robust. Forc¢ > 20 and
ng > 1, the weight for this density

. —2c|ng| + 2
o)/ i () o 2exp (2L )
decays exponentially with only |ng|, which is closer to
constant. This method will be refered to as the new im-
proved importance sampling (NIIS) technique in all the
following discussions.
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Figure 3: Density function of the Gaussian noise fy, (n)
(curve A) and the proposed noise f3:*(ng) (curve B).

Following the same approach as in the preceding sub-
section, the variance o3, of the NIIS technique can be
easily evaluated.

Case A: Binary System

For binary system,

2
0 (Ta(er, )i (m)) = 2exp (55)Q( 1) - 3(2)
B1)
and thus
3 1 1
s~ gz e (500 - D) (2

Using the approximation Q(t) ~ 7217; exp(=£ )to obtain
the optimum values

Copt & V1402 (33)

and the efficiency of this technique

. _xp(533)
T™MC/NIIS R T/\/ﬂ

which is better than Equation (23) for 1/0? > 1.
Case B: Multilevel PAM and QAM
For multilevel PAM with M = 2™,m > 2, if all the

symbols are equally probable, we have a very similar re-
sult

(34)

exp(25)
(2-21-")(1 - o/v2r)

and the optimum value of ¢ is also given by Equation (33).

TMC/NIIS N (35)
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For multilevel QAM it is difficult to find a close form
expression for the NIIS estimator variance. But numerical
intergration has been performed to find the approximate
optimum value of ¢,

1
Copt R 1/ 3 + o2, (36)

However, numerical integration also showed that for mul-
tilevel QAM this NIIS technique is not as good as CIS.
Hence for multilevel QAM CIS should be used. Yet it is
possible that the combination of CIS and NNIS could be
efficient for multilevel QAM, i.e., one could probably use

the CIS technique on the i-channel, while the NIIS tech-.

nique on the g-channel. The analysis for such a case is
still open.

5 Numerical Results

In the numerical simulation to be discussed here, all ran-
dom variables are derived from the uniform (0,1) dis-
tribution with suitable transformations. The uniform
(0,1) distribution is generated by a maximum length lin-
ear congrunential pseudo-random generator defined by
f(z) = 16807z mod 23! — 1 [7]. The Gaussian distribu-
tion is derived using the Kinderman-Ramage algorithm
(8]. The distribution specified by Equation (29) is de-
rived by adding cB to a Gaussian variable, where c is a
constant and B is a Bernoulli trial with equally probable
outcomes +1.

First we shall consider the ISI free SPAM. Tables 1 (a)
list the simulation results of BER using the CIS technique,
whereas Tables 1 (b) list the results of BER using the
NIIS technique proposed in this paper at various SNR (in
dB). In Table 1, we use 10 simulation runs to obtain the
average value and standard deviation (devi in Tables) of
the estimators. It can be found by comparing Tables 1
(a) and (b) that CIS for PAM is less efficient than NIIS
for PAM, since CIS for 8PAM achieves approximately the
same estimator deviation as NIIS for 8PAM using 3 to
4 times more samples. This result is in good agreement
with the analysis in Section 4.2. )

Next we consider ISI free 4QAM. As discussed in Sec-
tion 4.2, CIS is better than NIIS for QAM, hence we list
the results of CIS only for 4QAM in Table 2 for BER. The
number of simulation runs are also 10. It can be found
by comparing Table 2 with Table 1 (a) that CIS for QAM
is less efficient than CIS for PAM, since CIS for 4QAM
achieves approximately the same estimator deviation as
CIS for 8PAM using 5 to 6 times more samples. This re-
sult is in good agreement with the analysis in Section 4.1.

Table 1: (a) BER simulation results for SPAM using the
CIS technique.

c |SNR]| N* By devi B
0.2702 | 24.6 | 300 [ 6.97E-5 | 1.64E-5 | 6.23E-5
0.2344 | 25.8 | 550 | 5.63E-6 | 1.20E-6 | 5.80E-6
0.2104 | 26.8 | 1000 | 5.93E-7 | 7.54E-8 | 5.85E-7
0.1925 | 27.5 | 1800 | 6.06E-8 | 9.17E-9 | 5.98E-8

Table 1: (b) BER simulation results for 8PAM using the
NIIS technique.

SNR | N*** | Py devi P,

o
0.2702 | 24.6 | 100 | 5.83E-5 | 1.71E-5 | 6.23E-5

0.2344 [ 25.8 [ 180 [ 6.07E-6 | 1.11E-6 | 5.80E-6

0.2104 | 26.8 | 350 [ 5.78E-7 | 8.95E-8 | 5.85E-

0.1925 | 27.5 | 600 | 6.07E-8 | 6.19E-9 | 5.98E-8

Table 2: BER simulation results for 4QAM using the CIS
technique.

a SNR| N* B devi By
0.2702 | 14.4 | 1800 | 1.07E-4 | 1.995-5 | 1.07E-4

0.2344 | 15.6 | 3000 | 1.09E-5 | 1.74E-6 | 9.94E-6
0.2104 | 16.6 [ 5000 | 9.86E-7 | 9.09E-8 | 1.00E-6
0.1925 | 17.3 | 7000 | 9.96E-8 | 8.00E-9 | 1.03E-7

6 Conclusion

We have generalized the classical MC and IS methods to
include BER and SER of multilevel PAM and QAM. Sev-
eral efficient IS techniques, including one newly proposed,
have been discussed.
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