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Abstract: Dissolved gas analysis (DGA) is one of most useful
techniques to detect the incipient faults of power transformer.
However, the identification of the faulted location by the
traditional method is not always an easy task due to the
variability of gas data and operational natures. In this paper, a
novel CMAC_based method is proposed for the fault diagnosis
of power transformers. By introducing the IEC std. 599 to
generate the training data, and using the characteristic of self-
learning and generalization, like the cerebellum of human being,
a CMAC_based fault diagnosis scheme enables a powerful,
straightforward, and efficient fault diagnosis. With
application of this scheme to published transformers
data, the diagnoses demonstrate the new scheme with
high accuracy and high noise rejection abilities.
Moreover, the results also proved the ability of multiple
incipient faults detection,
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1. INTRODUCTION

Power transformers are essential devices in a
transmission and distribution system. Failure of a power
transformer may cause a break in power supply and loss of
profits. Therefore, it is of great importance to detect incipient
failures in power transformers as early as possible, so that we
can switch them safely and improve the reliability of power
systems.

A long in-service transformer is subject to electrical and
thermal stresses, which may form byproduct gases to indicate
the type of incipient failure. Dissolved gas analysis (DGA) is
a common practice in the incipient fault diagnosis of power
transformers [1-2], which tests and samples the insulation oil
of transformers periodicalty to obtain the constituent gases in
the cil due to breakdown of the insulating materials inside.
As study results indicate, corona, overheating and arcing are
the three main causes for insulation degradation in a
transformer {2-4]. The energy dissipation is least in corona,
medium in overheating, and highest in arcing. The fault
related gases include hydrogen (Hz), methane (CHy),
acetylene (C,H,), ethane (C,Hj), carbon monoxide (CO), and
carbon dioxide (CO,).

In the past decade, various fault diagnosis techniques
have been proposed that include the conventional key gas
method, ratio method [2-5], and recently, the expert systems
[6], neural network (NN) [7,8,13,14] and fuzzy logic
approaches [9-12]. The conventional key gas or ratio method
is based on experience in fault diagnosis using DGA data,
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where may vary from utility to utility due to the heuristic
nature of methods and no general mathematical formulation
can be utilized. The expert system and fuzzy logic
approaches can take human expertise and DGA standards
from the fault diagnosis system, and have been successfully
applied in this field. However, there are some intrinsic
shortcomings, such as the difficulty of acquiring knowledge
and maintaining database, so, their effectiveness depends on
the completeness and precision of expert expertise. The
neural network (NN) can directly acquire experience from
the training data, and exhibit highly nonlinear input-output
relationships. This can overcome some of the shortcomings
of expert system. However, the amount of training data must
be Jarge enough to ensure proper training. Non-training data
are easy to cause wrong diagnoses. Moreover, the multiple
faults diagnoses and fault anticipation abilities are still
lacking.

In this paper, a novel CMAC_based method is presented
for the fault diagnosis of power transformers. First, we
generated the virtual training data based on the IEC std. 599
to replace the large amount actual training data. Second, we
developed a CMAC based diagnosis model and using virtual
training data to trajn the memory weights. Finally, the
proposed scheme can be used to diagnose the fault type of
power transformers. With application of this scheme to
published transformers data, the diagnoses
demonstrate the new scheme with high accuracy and
high noise rejection abilities. Moreover, the results
also proved the ability of multiple incipient faults
detection.

2. BACKGROUND ON CMAC NEURAL NETWORK

Albus proposed a neural model called CMAC
(Cerebellar Model Articulation controller), which like the
models of human memory, perform a reflexive processing
[15]. The CMAC, in a table lock-up fashion, produced a
vector output in response to a state vector input. Figure 1
shows a basic configuration of CMAC network [17], where

the input states are denoted by xe R", and the output
is ye R™ . Through a series of mappings, include the
quantization, segment addresses coding, virtual addresses
concatenation, Hash coding (if needed), and sums the fired
memory addresses weights to obtain an output. The mapping
processes must satisfy the similar inputs excite the similar
memory addresses, i.e. if the input states are close to (similar)
in input space will have their cotresponding sets of
association cells overlap. For example, if x; and x, are
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similar (close), x; excites the memory addresses a,a;asay,
x; should excite the memory addresses apajasas oOr
azauasdg If two inputs fire up the same memory addresses,
we say the similarity of the two inputs is high. Low similarity
would excite fewer same memory addresses,

As described above, the CMAC architecture, every
memory cell {Cerebellar cell) remembers a weight value.
Through a series of mapping, every input state will fire up a
group of memory cells (Fig. 1 shows the number of fired
memory cells are 4). The summation of the fired memory
cells weights will obtain an output. Compare the output with
the desired target, then using the difference to update the
fired memory cells weights (iraining/learning). The fired
memory cells will remember the correct mapping relation for
the special input state. Therefore, when the same or similar
input states input again, the output will preserve the possible
correct output depending on the similarity, This idea is same
as the brain of human being. When we see a familiar friend,
no doubt we can recognize him/her. Someday the familiar
friend takes a gauze mask, we just see some feature of
him/her, most situation we still can recognize him/her. As a
result, the characteristic of generalization, local reflexive
action and seif-learning make the CMAC attractive to fault
diagnosis system, especially to multiple faults and lack
of fully training data system.

3. THE CONFIGURATION OF CMAC_BASED FAULT
DIAGNOSIS SYSTEM

In dissolved gas analysis, the IEC codes have been used
widely by the utilities. From IEC std. 599, the codes of
different gas ratios and fault classifications according to the
gas ratio codes are shown in Table 1 and 2. Although IEC
codes are useful for fault diagnosis in transformers, but the
number of code combinations is iarger than the number of
fault types, and “no match” may be indicated in the fauit
diagnosis. In this section, the CMAC_based fault diagnosis
method is proposed for power transformers to solve the no
match, noise, and multiple faults problem.
3.1 The development of CMAC_based fault diagnosis system

Fig.2 shows the configuration of the CMAC based

fault diagnosis system of power transformers. Refer to the
IEC std. 599 the gas ratio of C,HyC,H, CH/H; and
C,H /C,Hy are used as the input states. The diagnosis system
contains 9 parailel memery layers and every memory layer
has one output node. Every memory layer remembers one
fault type feature. E.g. layer 1 store the features of fault type
1 of Table 2, layer 2 stores the features of fault type 2 of
Table 2, etc. Input one group gas ratio data, through a series
of mapping, the input data will generate one group fired
memory addresses. To sum the excited memory addresses of
each layer, output node will obtain one value to express the
possibility of fault type n. To confirm the fault type the
output value will be close to 1. Multiple nodes output |
represent the multiple fault types exist.
3.2 The training of CMAC _based fault diagnosis system

The proposed scheme using the IEC codes of Table 1
and 2 to generate the training data. Therefore the large
amount real data are not necessary. For example, the gas
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ratio code of fault type 2 (C:H/C,H,, CH/H,, C;H/C,Hg) =
0,0,1), ieCHA/CH<0.1, 01 £ CH/H, £ 1,I<
C,H/C,Hs<3. Therefore, using the program 1{designed by
MATLAB), the virtual training data can be generated. In
program | the step value STEP_X determines the resolution
of training data. High resolution will cause long training time,
The training data then send to the CMAC network (layer 2),
through the quantization, fired addresses coding, and sums
the fired memory cells weights to obtain an output. Compare
the desired output 1, then the error used to tuning the fired
memory weights, The details will describe as follows:
for CZH2 C2H4=0:STEP_1:0.1

for CH4_H2=0.1:STEP 2:1

for C2H4 _C2H6=1.STEP 3:3

Yoquantization, address coding, ...

end end end
Program 1. Training data generation

3.2.1 Quantization mapping

The input values send to the CMAC network, it is first
though the quantization mapping ( to produce a quantization
level output. The quantization output can be described as
follows [17]

@ = (%, X pins Ximax o Gimax )» = Loom (O
where n is the input numbers. The resolution of this
quantization depends on the expected maximum and
minimum inputs, Xmex and X, and on the number of
quantization levels, qn,. High resolution will have good
generalization ability but more memory size is needed. Since
the major boundary of [EC codes are 0.1,1, and 3. Assuming
the maximum quantization level g, is chosen as 12, then

the quantization mapping diagram can be shown as Fig. 3.
Figure 3 shows that the input state between 0.1 and 1, 1 and
3 are divided five quantization levels respectively. It is note
that we can change the g, value depending on the
resolution requirements,
3.2.2 Segment address mapping

Each quantization level then though ¥ mapping (Table 3)
outputs A~ segment addresses, 4° the number of associated
(fired) memory cells. Table 3 lists the mapping relation of
quantization level and the segment address, which the
quantization level gne is 8 and A’is 4. For example, the
quantization level 3 will map a group segment
addresses [v),v|3,V13.v14] = [5.6,3,4] .
3.2.3 Concatenation

As described above, each input state produces A4~
segment addresses. The concatenation unit then concatenated
these segment addresses as a virtual address. The
concatenation equation can be expressed as following.
V) =concat(v,v 0, v ), = Lond )
For example, assume the gas ratio quantization levels of
(C:H/CoH,y CHyH, CHyCoHg) are equal to (3,6,8), then
the segment addresses generated by CHYCH; are
Vi vz, Vi3, 141 = 15,6,3,4] by CH/H, are



[Vz],VZl, V23,V24] =[9,6,7,8] and by CzH/C}Hg are
[vs1:v32,V33,v34] =[9,10,11,8]. Then the concatenation

operation can be expressed as follows:

¥, = concat[vy,vy,vy ) = coneat[5,9.91=010110011001B
V, = concafv,y,vy,v3; ] = concaf6,6,10]=011001101010B

V3 = concafv,s,v13,v33] = concaf3,7,11]=00110111101 IB

V, = concat[vyy, Va4, Vs ] = concat[4,8,8] = 0100100010008
Assume

bitn = ceil(10g, (e + 4 )5 (3)

where bitn is the minimum bit numbers tc encode the
segment address and ceil(x) a function rounds the elements of

x to the nearest integers towards infinity. Then the general
form of ¥; can be calculated as follows:

V= 2w = 4 @)
=

To sum the weights located at these addresses will obtain an
output value.
3.2.4 Hash coding

As described above, high resolution (increase the
quantization level and A4) will have better generalization
ability. An increase in the number of 4’ results in
concurrently increases the size of virtual address space. If the
memory size beyond the limitation, Hash coding is needed.
To implement CMAC network using a realistic amount of
memory, Hash coding performs a many-to-one uniform
random mapping to generate a physical memory address. As
described in [17], Hash coding can compress the huge virtual
address space into a compact amount of memory and
minimize the probability of physical address collision
(different inputs fire up the same association address). In this
paper, we don’t consider the Hash coding because of the
memory size is acceptable.
3.2.5 Output mapping

The finial mapping compuies the output y by summing

the weights Wy, located at the physical memory addresses. It

can be described as

P

y=2w (5)

=

3.2.6 Update the weighting

During training, if the output of the CMAC does not
match the desired output for a given fault type input, the fired
addresses are updated using the following steepest-descent
update rule:

Id Ya— ¥

W e wt + —df— ,
In this equation, y,is the desired output, y the actual output,
and 0< g <1 the learning gain.

*

i=12,.,4 (6)

3.2.7 Noise rejection
The quantization and segment mappings give the
CMAC the ability to generalize {produce similar outputs in
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response to similar inputs). Continuous variations in input
values translate into discrete variations in input quantization
levels. As described in 3.2.3 , if the quantization level of
C:Hy/CoH, input change by 1(3->4), then the segment
address mapping [v;;,v2,v13,V14] from [5,6,3,4] change to
[5,6,7,4]. All virtual address segments remain the same
except vy, which shifts from 3 to 7. Consequently, outputs

associated with neighboring input quantization levels will
have three of four virtual addresses in common because only
one address will have changed, F; shifts from
concat|3,7,11} to concar|7,7,11] (assuming the other two
input levels remain constant). Therefore, even though the
noise added to the input, the CMAC outputs still can
preserve most of the correct features. Note that for a given
input quantization mapping, an increase in 4" resulls in an
increase in the amount of shared weights between
neighboring  input/output pairs. This will increase the
generalization ability and improve the noise rejection.
3.2.8 Convergence

For a supervised learning system, the convergence is
confirmed [16]. In this paper, we assume the memory size is
large enough and without using the Hash coding. The
collision will not happen and the convergence is guaranteed.
3.2.9 Learning performance evaluation

Assuming the i node (i=l,...,9) of Fig.2 outputs 1
represents system with fault type i. The training data number

n, generated by program 1 can be calculated as following
equation:

", =ﬁx(0'l—1 +l)-ﬂx(1 0.1 +1)- fix 3-1 D N
step _1 SH 2

ep _ step_3

where fix(x) function rounds the elements of x to the nearest
integers towards zero.
Let

g
E=Y (=D i=1..9 (8
j=1

where i subscript represents the i memory layer. Then we

can stop the training phase when E; <& * gis a positive

small number.

3.3 Diagnosis algorithm

As described above, the

summarized as follows:

3.3.1 Off-line training phase

Step 1.Build the architecture of CMAC_based fault diagnosis
system, including three input states, nine layers
memory and nine output nodes.

Step 2.Specify the quantization level g, learning gain 3,
and the amount of network generalization A".

Step 3.Generate the virtual training data via IEC code of
Table 1 and 2.

Step 4.Quantization, fired addresses coding, and sums the
fired memory cells weights to obtain an output.

Step 5.Update the fires memory cells weights using eq. (6).

Step 6.Does the training data finish? No, go to step 3. Yes,

diagnosis  algorithm



next step.

Step 7.Learning performance evaluation. If E< ¢, stop
training and save the memory weights. Otherwise, go
to step 3.

Step 1 to 7 is off-line mode. The training time maybe
shorter just few seconds or longer more than few hours
depending on the data resolution, ¢ma., 4, and the selection
of pas ratio range (PENTIUM iii500, using MATLAB
programming). Fortunately, the off-line mode just only needs
to run one time. Generally, long training time will obtain
better and more exact weights, just like the learning mode of
human being.

3.3.2 On-line mode

Finish the off-line training mode, then the diagnosis
system can be used to diagnose the fault type of transformers.
Step 8.Load the last saved memory weights and specify the

threshold value (e.g. 7=0.9 ).

Step 9.Input the gas ratio data that to be diagnosed.
Step 10. Quantization, fired addresses coding, and sums the
fired memory cells weights to obtain an output. If the
output larger than a specified threshold value, then
the fault type is confirmed.
Step 11. If the diagnosis is correct, go to step 12. Otherwise,
go to step 13.

Step 12. Does the new gas ratio data to be diagnosed? Yes,
go to step 9. No, go to step 14.

Step 13. Update the fired memory cells weights, then go to
step 12.

Step 14. Save the memory weights and exit.

4. CASE STUDIES AND DISCUSSIONS

4.1 Tested data diagnosis

To demonstrate the effectiveness of the proposed
CMAC based fault diagnosis method, twenty power
transformer DGA results of from references [7-9] are tested.
The detailed gas data are shown in Table 4, where the AFC,
IEC and CMC express the actual fault type, the diagnoses of
the IEC method and the proposed CMAC based scheme,
respectively. Through 10 iterative times training or learning
performance evaluation ( E; <0.01 ), the memory weights
mapping distribution drawing is shown in Fig. 4. Figure 4,
similar to the cerebellum of human being, maps the feature of
each fault type on a special memory layer. The larger
difference of each layer distribution represents easier to
diagnose the exact fault type. Similar distribution plot of
each layer means the diagnoses with the multiple fault types

easily. Table 5 lists the related parameters of CMAC network.

Table 6 shows the detailed outputs of each node. The last
column is the diagnosis fault types considering the threshold
value 77 = 0.9 or 0.95(bold type). Fault type no. 4 and 5 are
medium temperature and high temperature thermal fault
respectively. Therefore fault type no. 4 and 5 are similar, and
the diagnoses of the 4t gt gth 11%, and 13" data contain the
multiple faults of no. 4 and 5 and the possibility of fault type
no. 5 is higher than no. 4. Observe the IEC code of Table 2,
the codes of fault type no. 8§ and 9 are overlap somewhat.
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Consequently, the diagnoses of the 5%, 6™ 12" and 14% data
output the multiple fault of no. 8 and 9 are reasonable. Note
that the 10™ and 19™ have no matching codes for diagnosis
by the 1EC method, but the results of the proposed method
still detect the possible faults type. Moreover, the gas ratio of
C,H/C:H,in the 5“’, 6 data are far away the virtual training
data bound (the bound of C,H/C.H, is 3, virtual training
data take to 6, and the 5™, 6™ data are 14, 15.94, respectively).
The diagnoses still diagnose the fault type no. 9. The 20"
data diagnosed by the IEC method only obtained the fault
type ne. 4, but the proposed CMAC based scheme
confirmed the multiple faults type no. 4 and 5. The output
values of node 4 and 5 are equal to | exactly. In short, the
proposed method provided the most possible fault type
diagnoses and never lost the actual fault type. It is proved
that the proposed scheme not only diagnoses the main fault
types of power transformers but also provides useful
information for future fault trend analysis.

4.2 On-line training (learning)

If the wrong fault type happened in the diagnosis
process, the on-line training is proceeded to re-train the
memory weights. The update rule is same as the equation (6).
But since the characteristic of the proposed scheme is to
provide the most possible fault type diagnosis, we don’t use
the anti-excited scheme to update the redundant fault type.
Increase the threshold valuen or just consider the maximum

output value will filter the redundant fault type naturally.
4.3 Noise rejection test

To test the noise rejection ability of the proposed method,
we added +5% to +50% random noise to the input states, i.e,
added (5 ~ 50)% x rand(1) noise to the input states, where

rand(l) is normal distribution random function between 0
and 1. Table 7 shows the detailed output of each node for
input node with £10% noise. Table 8 shows the diagnoses
for different percentage noise added. In most test data the
diagnoses still output correct fault type even though the noise
over 50%. Table 9 shows the diagnoses performance with
different percentage noise, the last column are the 1EC
method results. As observed from Tabie 8 and 9, it proved
the proposed method with high noise rejection ability and
capable of multiple faults detection.
5. CONCLUSION

This paper presents a novel CMAC based fault
diagnesis method for power transformers. Using the
characteristic of generalization, local reflexive action and
self-learning ability, the proposed scheme achieves at least
the following merits: 1) Don’t require the actual data to train
the CMAC network and high diagnosis accuracy is obtained.
2) Detect the main fault type and provide useful information
for future fault trends and multiple faults analysis. 3) High
noise rejection ability, 4) Suit to non-training data and
associate the most similar fault type. 5) Don’t require any
expert experience to train the CMAC network. The tested
data demonstrate the success of proposed scheme. However,
how to design an optimal memory size, quantization level,
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and associated cells numbers to obtain more efficient
application are our future work and under studying.
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Table 1 IEC gas ratio codes

Ranges of  |Codes of gas ratie
the GCH; | T | GHy
gas ratio Cafiy | Hy | CiHg
<0.1 0 1 0
0.1-1 1 0 0
1-3 1 2 1
>3 2 2 2

Table 2 Fault types according to the gas ratio codes
Fault no. Fault type Gy | EH, | GHy
CHty | #: | Cofy
1 No fault 0 0 0
2 < 150°C Thermal fault 0 o 1
3 150°C~300°C Thermal fault 0 2 4]
4 300°C ~700°C Thermal fault 0 2 1
5 >700°C Thermal fault 0 |2] 2
[ Low energy partial discharges| 0 1 0
7 High energy partial discharges| 1 1 0
8 Low energy discharges lor2] O |[lor2
9 High energy discharges 1 0 2

Table 3 Quantization level and segment address mapping

11 7]
:cg’ 10 vy | vy
e 9 vi | vi | v
2 8 ve | v | ve | v
§ 7 Vi L] | 2] Vi
é 6 Vil ve] val] v
@ 5 vi | ve b vi ] v
4 Jvifvel vl v
3 lwlvilw
21wl v
1| v
1 2 |3 4 |5 6 |7 |8
Quantization level
Table 4 Tested gas data of transformer and dianoses by different method
No.| H: | CHy jC:Hs |C:Ha |C:H: |AF IEC [CMC
C
1] 147] 377 105; 271 02]1 |1 ]1,6
2| 345|112.3) 27.5] 51.5| 588| 8 | 8 8
3 181| 262| 41| 28 o313 3
4| 173 334] 17218125 32715 | 5 | 4.5
5 127| 107 11] 154; 224] 9 19 189
6 60| 40| 69] 1101 7019 19 |89
7| 220| 340f 42] 480f 14| 5 |5 | 4,5
8 1701 3201 53] 520] 32|15 )5 |45
9 27| 90 42 631 02]4 14 4
10| 565 53 34 47 0] 8 | N |L,68
11 56| 286] 96| 928 MN515 |45
12| 200| 48] 14| 117} 13119 19 | 89
13 78} 161] 86] 353 10| 5 |5 14,5
14| 324| 55| 14| 126{ 13219 |9 | 89
15| 980y 73t 58] 12 oje 6|16
16} 160| 130] 33| 96 o212 |28
17] 650] 53] 34 20 0l |6 }L6
13 951 110] 160] S50 o333 1|13
19] 300) 490] 180] 360] 95| 4 |N | 4
20| 200] 700] 250] 740 114,514 ] 4,5
Table 5 CMAC network parameters
Leamin ol Memo Step_1
times ’ ras| A" [bitn sizery e |s Steg:2 Step_3
19 12 [10] 5 32768 [0.5]0.01]0.9] 0.04 0.1
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Table 6 Detail outputs of CMAC_based method (no noise)




0.166[0.583[0.526[0.924FL001 0 | 0 [0628[0.634] 4,5
0.166]0.500{0.526[0.922}T000] 0 | 0 [0.544]0.515] 4.5
0.166]0.333]0.894|1:000f0.792 0 | 0 [0386[0.265] 4

10 [0.918]0.833[0.419[0.155] 0 [1:000]0.892[0.922[0.402] 1,63
o0.333]0.526[0.923fr000] o | o [o3ss[e.2es| a5
12] o [o333] o [o155[0274] o [o317[096a0.982] 89
13 [0.1660.500]0.526 [o.922fr:000] @ | ¢ [o.544o.s15] 45
14| o [0333] o [0155]0274] 0 [0.317[0964:0.982] 4.9
15 [0918]0333]0415[0.155] ¢ fLo000jo892[0335] 0 | 16
16 10.33411:000]0.365[0.694|0.7240.142]0.144|0.920]0.899| 2.8
17 [o.918[0.500]0.419[0.155] 0 |rocefosdz[osz2afo132| Ls
18 [0.916]0.583{0:999}0 386 [0.173[0.571 [0.534[0.426[0.064] 1.3

Quuntization

Output

Neo. Each node output diagno {Noise (%)| CMAC _based | IEC
7 3 ] 3 3 7 3 9 ses method method

1 [E001[0.500[0.473[0.232]0.035[0.928[0.892[0.335| © | 16 =09

2 0.333]0.210f0.155{0.137]0.285 0:564 3 + 0% 100% 87.5%

3 0.6661:00010.693[0.449]0.428{0.394[0.529]0.108] 3 + 10% 90% 87.5%
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