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Abstract 
For practical reasons, in the technique of feedback 

linearization, the requirements of mathematical modeling and 
access of internal states of complicated nonlinear systems should 
be removed. This paper demonstrates that, simply using output 
feedback, the input-output linearization of affine nonlinear 
systems with zero dynamics being exponentially stable can be 
accomplished by using multilayer neural network to estimate the 
instantaneous values of the nonlinear terms appearing in the 
feedback linearizing control law. Neither mathematical model nor 
internal state of the nonlinear system is required. The 
configuration for training the multilayer neural network as a 
device of the input-output linearizing controller is established. An 
example of affine nonlinear system is studied by computer 
simulations for various cases linearizing control. 

1. Introduction 
Feedback linearization based on concepts from differential 

geometry [2,6,9] can be adopted as a design methodology of 
nonlinear control systems. Using nonlinear coordinate 
transformation and feedback control, the original nonlinear model 
can usually be transformed into an equivalent linear one. With the 
terminology's, input-state and input-output linearizations refer 
respectively to complete [5,7,12] and partial linearizations [4,8,10]. 
For the linearized system, the well-developed design techniques of 
linear systems can be applied to solve for the appropriate 
controller. This approach has been successfully applied to a 
number of practical control plants such as high performance 
aircraft's, industrial robots and biomedical devices, Even though, 
there still exists major challenges for the feedback linearization 
design such as the requirement of precise mathematical model, the 
necessity of state feedback, and no guarantee of robustness in the 
appearance of parameter uncertainty or unmodeled dynamics [ 1 I]. 

Identifying the nonlinearity of control systems by neural 
networks through learning contributes another concept of 
nonlinear system design [I]. It is shown in this paper that, simply 
using output feedback and without the mathematical model of the 
system, the input-output linearization of an affine nonlinear 
system can be accomplished by estimating the decoupling matrix 
appearing in the approximated incermental linearizing control law 
with multilayer neural networks. 

2. The Problem Of Neural-Network-Based Input-Output 
Linearization 

Consider a square, affine nonlinear system with exponentially 
stable zero dynamics described by the following nonlinear 
differential equations 

dynamics of a nonlinear system is the dynamics of the system 
when the outputs are constrained to be identically equal to zero.) 
For simplicity the arguments regarding to time, unless noticed, are 
omitted by the expressions in the following context. In the designs 
of input-output linearization, each output, Y,, of equation (1) is 
differentiated with respect to time repeatedly until at least one of 
the control inputs appears in the output equation. If r, represents 
the relative degree associated w t h  Y, .  Then the ("-order 
derivative of y ,  with respect to time can be written as follows : 

where h, denotes the j I h  component of h, L,h,(x): R" -+ R and 

L,,h,(x): R" -+ R stand for the Lie derivatives of h,(x) with 

respect to f(x) and gJ(x), respectively. Equation (2) can be 
rewritten in vector-matrix form as follows 

y'" = c(x)+ D(x)u (3) 
where Y(') = [y!q), #), . . ., J A ; ) ] ~  with r, ,r, ,. . .,r,,, being the relative 
degrees of the system, the decoupling matrix is 

I L&-'h,(x) * * .  L&'h,(X) [ -  L,, L;1.-'hlIl(x) .. . L,," Lf"h,,,( X) 
D(x) = 

and 
c( x) = [L; h, (x), . . .) Lth,,(X)]'. 

If the mathematical model of the nonlinear system is given, the 
design of input-output linearization is to solve for the control law, 
U, so that the closed-loop characteristics of the system 
characterized by equation (3) is linearized. Unfortunately the 
availability of mathematical model is not the practical case of 
most complicated nonlinear systems. For many real world 
applications, the mathematical models are usually severe difficult 
to be identified. This reality keeps the feedback linearization 
approach of many complicated nonlinear systems remaining in the 
theoretical phase. Instead of using the mathematical model, our 
consideration is to accommodate the nonlinearity required in the 
linearizing control law by the learning ability of artificial neural 
networks. Fig. 1 shows a block diagram of this substitutive 
configuration. Comparing with equation (3), the neural network 
may provide the estimations of nonlinear functions, D(x) and c(x). 
through an appropriate learning process. This configuration 
releases the designer from the necessity of mathematically 
modeling the nonlinear plants. The goal is to establish the design 
procedures and show the feasibility of neural-network-based 
input-output linearization of nonlinear systems. Only square, 
affine nonlinear systems with zero dynamics being exponentially 
stable are considered. 
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Fig. 1 A block diagram of 
neural network based feedback linearixzation 

3. The Incremental Linearizing Control Law 
If the decoupling matrix, D(x), of the nonlinear system 

characterized by ( 1 )  is nonsingular, the exact linearizing control 
law is 

where v ER"' is the auxiliary input vector. Applying (4) to (3) 
yields the following m decoupled linear, SISO, systems 

To stabilize the linearized system described by (5 ) ,  many well- 
developed linear design methods can be applied. Pole-placement 
by output feedback may give control laws as 

for i=1,2, ..,m to achieve closed-loop characteristics governed by 

U = D-'(x)[-c(x)+v] (4) 

V. (5 )  y(r) = 

v, = w, - a , l y ~ ~ - ~ ) - . . . - u l ~ ~ l ~ ,  -a,$yI  

y,oi)+a,,yjr.-l)+ ...+ u,,_,j,+a,,y, = w, 

(6) 

(7) 
where w,qs are reference inputs, aI/Is, j=1,2 ,..., r are the 

parameters to be chosen so that SG +a,, sG-'+...+a,$ are Hurwitz 
polynomials. 

For the nonlinear system under consideration is with c(x) and 
D(x) being uniformly continuous functions of time over the 
interval o I t I L .  Then c(x),,, + c(x)(~-~)  and 

D(x)(,) -+ D(x)(,~-~) are true for sufficiently small sampling 
intervai of T = t ,  - tk-l ,  where 0 5 T 5 L and the subscripts denote 
the time instant at t,. This knowledge motivates the time-delay 
control law of input-output linearization as follows E1 31, 

It has been shown that if one chooses an appropriate fi such that 
U(k) = D-'(x>(,) K - Y ; L )  + D(X)(k-l) U(*-I)) + V(k)I (8) 

(9) 111 - D( x)D-' 11 < 1 
and further, keeps the auxiliary inputs, v, as uniformly continuous 
functions of time, where I represents an identity matrix with 
appropriate dimension. Then the system defined by (1) can be 
input-output linearized by applying the following approximated 
time-delay control law, 

U(,) = D-WY;;!,) + DU(kbI))+ V(k)I (10) 
Here, using D(x)(,, = D(x)(~+ and after rearrangement of (8), we 
obtain the incremental linearizing control law as follows, 

U@) = 0. Au(,) = ~ ( k )  - U(,-,) = D-'(x)(k)[v(k) - Y&)], (11) 
Using multilayer neural nenvork 10 give the estimation of D(x)(,, 

as 6(k) at every sampling instant, the approximation of the 
incremental linearizing control law is obtained as follows, 

In the digital realization of the linearizing controller, the uniformly 
continuous property of the auxiliary input is usually not 
guaranteed. Under this consideration, the following theorem 
shows the situations of the tracking error in applying the 
approximated incremental linearizing control law. 

Theorem 1 Consider the nonlinear system and its controller 
being well defined by (1) and (12), respectively and c(x) and D(x) 

AU(k) = U(k) -U(,-,) = D-l(k) [V( , )  -Y;;!l)l, U@) = 0. (12) 

(16) 
W ( k )  - Y g I  = P -D(X)(k)D;kl)ltv(k-l) - Y ; L ) l +  

[I - D(x)(k)D;&k) - V(k-I)l 
Taking norm on vectors and induced norm on matrices of 
equation (1 6), the following inequality is obvious 
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Since 2p 1, (20) depicts that the tracking error converges 
exponentially to zero for sufficiently large value of k. 

case (iii)- When I I v ( ~ )  - ~ ( ~ - ~ ) l l >  I ( v ( ~ _ ~ )  - yi;$11 , the substitution of 

IIv(,) -vg-,)1I for ] I v ( ~ - ~ )  --y{;!,)]] on the right side of (17), we 
obtain 

IIv(k) -Y$ll' 2111- D(x)(k)D~~)ll, IIv(k) -v(k-l)l] (21) 
This proves the last case.+ 

For nonlinear systems being exactly linearized, the tracking error 
should always be kept at zero. However this is only possible when 
perfect model of the system is available. Alternatively, by using 
the approximated incremental linearizing control law, theorem 1 
has revealed that if the decoupling matrix can be estimated 
accurately to some extent and the auxiliary input is manipulated 
finely. The tracking error of the linearizing control can either be 
constrained within a bound as in case (iii), or even converge 
exponentially to zero as in the cases of (i) and (ii). As a result, 
instead of (S) ,  the imperfect input-output linearizing control 
results in a perturbed linear system described by 

where 5 represents the vector of perturbation. For case (iii), the 
perturbation may be so large that the linearizing control being 
divergent, if the decoupling matrix and the step size of the 
auxiliary inputs are not chosen appropriately. 

4. Neural Network Based Linearization 
4.1. Issues of The Multilayer Neural Networks 

A neural network is a massively parallel, interconnected 
network of elementary units called neurons. A neural network 
with multiple neurons is usually organized into a sequence of 
layers, called multilayer neural network. The general structure of 
an (q+1) multilayer neural network with no inputs and n4 outputs 
can be illustrated as shown in Fig. 2 and Fig. 3. The input layer 
usually acts as an input data holder and signals flow from the input 
layer through the hidden layers to the output layer. The output of 
each neuron in the pfh  layer can be expressed as 

y'" = v + 5 (22) 

1 

Fig. 2 A hidden neuron i of layer p. Fig.3 A multilayer neural network 

(23) 

In applications of system modeling, it is common for the dynamic 
range of output data to be greater than 1, the activating function of 
the output node is therefore chosen to be linear. Thus the i* 
output node performs a weighted sum of its inputs as follows 

4.2. Training of The Multilayer Neural Network for Input- 

Training of the neural network is to determine w's and b's such 
that x ; ( t )  of (24) is as close to the desired output as possible. 
Using Stone-Weierstrass theorem [3] it can be shown that a given 
nonlinear function under certain conditions can be represented by 

Output Linearization 

a corresponding series such as Voiterra series or Wiener series. 
The practical consequence of Stone-Weierstrass theorem is that an 
infinitely large neural network can model arbitrary piecewise 
continuous function. A finite network, however, may only 
accurately model such functions over a subset of the domain. Our 
interest is mainly in networks which permit on-line identification 
and control of dynamic systems in terms of finite dimensional 
nonlinear differential equations. 

The method commonly used to evaluate the gradient of a 
performance h c t i o n  with respect to a weight vector of multilayer 
neural networks is called back propagation. If J(0) is the 
performance index which has to be optimized with respect to the 
parameter vector 6. Then 6 can be adjusted by according to the 
steepest decent method as the following equation 

where 0 < q < 1, the step size, is a chosen parameter. In a 
multilayer neural network, the performance index J is usually 

chosen as c(x, -xP)' where are the desired values of ~ Y l s .  

Thus the weights and the thresholds are respectively updated 
according to 

4 

,=I 

wPJ ( t )  = wP, (t - 1) + AwP, (t) 

b,!( t )  = b,"( t - 1) + Ab: (t) 

with the increments AwP, (t) and Ab,! (t ) being given by 

Aw;(t) = q ,6p (t)X,P-' ( t )  + IX~AW; (t - 1) 

Ab: (t ) = qb6 p ( t  ) + a,Ab," ( t  - 1) 
(27) 

where the subscripts w and b represent the weight and threshold 
respectively, a, and ah are momentum constants, q, and qb 
represent the learning rates and sp(t )  is the error signal of the i'h 

neuron of the p ' h  layer. When the activating function of the output 
neuron is linear, the error signal at an output node is 

and for the neurons in the hidden layer 
s y ( 0  = X,(t)--XP(t) (28) 

6; ( t )  = y ( Y; ( t ) ) ! f6Y1  (t)w;'( t - l), p = q - 1,...,2,1 (29) 
,=I 

where y(K) denotes the first derivative of y(K) with respect to y. 
To realize the estimations of nonlinear functions D(x) and c(x) 

in equation (3) for input-output linearizing control, Fig. 4 shows a 
configuration for training the multilayer neural network. In order 
to calculate the derivatives of plant outputs correctly, the training 
input u(t) are generated by sending sequences of random signals 
through digital lowpass filters with bandwidth o and sampling 
period T subject to the constraint o~ = 0.1 rad. The lowpass filter 
is of 2nd-order Butterworth type and can be expressed as 

~ ( k )  = 1.8588~(k - 1) - 0.8681~(k - 2) 
(30) + 0.00233(r(k)+ 2r(k -l)+ r(k - 2)) 

where r(k) are random signals uniformly distributed in the 
operating range. The weights of the neural network are updated by 
using the steepest decent method represented by (27) with 
appropriate selections of the step size q and the momentum a to 
minimize the performance index 

m 
J = C(rjli' - j y ) *  

,=I 
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where i?, and Gv are the elements of 2 and D, respectively, j f c )  is 

the ith component off(")  (the approximation of y(')) and r, is the 
i s  relative degree of the plant. Because the outputs of the neural 
network are 6 and D rather than 8'". The error term described by 
(28) for the back propagation learning algorithm are modified to 

s:, = [y? - j!"] , for i = I,Z,. . .,m (32) 

Sq di, - -[y,(';)-j!G)]uJ,fori=1,2 ,..., m and j = 1 , 2  ,..., m 

where S z  , S:g are the error signals for and (ill, respectively. The 
algorithms for training the weights of hidden layers of the neural 
network are kept unchanged. The most important thing of this 
training 
algorithm is that L - 

measurements of 
Backward 

Approximation 
yq outputs. This 

feature is 
practically 
necessary. 

4.3. Estimation of Relative Degree 
To obtain the form described by (3 )  for the design of input- 

output linearization, the knowledge of relative degrees is 
indispensable. This paragraph presents a numerically feasible 
method to determine the relative degrees of a nonlinear system. 

Theorem 2 Assume that a nonlinear system characterized by 
equation (1) has continuous states and with relative degrees 
r,,r,,. .-,r,,,. Let the control input u,(t) associated with the relative 
degree of the irh output Y ,  be a piecewise continuous function 
with a discontinuity at t = t,, and u J ( t )  = 0 for all j + p  of u(t). 
Then y ,  and its derivatives to the order of r, - 1 are continuous 
function of time, except that the order derivative, y(c), has a 
discontinuity at t = t,. 
proof : Differentiating the i lh output equation of system (1) up to 

Fig. 4 The configuration for training the neural network 

rl order, we have 

yp' = c: ( x )  for k = O,l;..,r, -1; and (33) 
(34) y? = c,? ( x )  + d , ( x )u  

where c:(x)  = L:ht(x) for k = O,l,. . .,rl, and 

d , ( x )=  [L,,q-'h,(X) e * +  LCmL:-'h,(x)] with L,,L:-'h,(X);t 0 
are smooth functions of x. For continuous c,k(x) and from (33), 
we obtain 

Similarly, from (34) and the continuity property of c,"(x) and 
d , ( x ) ,  we achieve 

y y (  t; ) - y,'"( t; ) 

= L,, q-' h(x(ti ))[U, (t; ) - 

= c,'(x(t; ))- C: ( ~ ( t ; ) )  + d,(x(j;))u(j:)-d,(x(t;))u(l;) (36) 

( t i  )] Z 0 
Practically, to discover the relative degrees of a nonlinear system, 
one can drive the system with step or square wave inputs, then 
investigate the outputs and their derivatives for the appearances of 
discontinuities. The lowest order of the derivative of the ilh output 
which appears discontinuity corresponding to the jump or jumps 

* 

in any one input is the i'h relative degree of the system. A specid 
case of SISO systems is that the nonlinear function D(x) at the 
occurrence of discontinuity can be calculated from (36) as 

(37) D(x(t ,  1) = [ ~ ' " ( t ;  ) - ~ ( " ( t ;  )I/[uCt;') - 11 

5. Simulation Results 
Given a third order system described by 

Y = XI 
where 

exp(-x$)-l 
c (x )  = a x ,  + 8 exp(-x,/2)+1 

D ( X )  = 4 - exp(-O.15x: + 1.1) 
A three-layer neural network (q=2) with 10 neurons in the hidden 
Iayer is adopted as the learning device of all the following 
simulations. The training algorithm updates the weights of the 
neural network by the steepest decent method and using step size 
q=O.Ol and momentum ~ ~ 0 . 0 1 .  

case (a)- using fixed value for all f i (k) .  
With a unit step input u( t )  = u,(t), the value of D(x) at f = 0 can 
be estimated by using (37). The result is 

I) - .. 
(39) 

j j ,+4yd+6y,=6w (40) 

(0)  - (Y(0' ) - D- ) ) / (U@+ ) - 4 0 -  1) 
= (0.9957 - 0)/(1- 0 )  w 1 

For the desired closed-loop dynamics being described by, 

the controller with the approximated incremental linearizing 
control is 

AU(k) = D ) ; i ) [ V ( k )  - &k-i)l 

vck) = -4Y(k-i1 - ~ Y W  + 6 w ~  

(41) 

(42) 

where 

Using D,,, = 1 for all time in (41), the simulation result is shown 
in Fig. 5 with the sampling period T = 0.01 sec., initial state 

xo =[0.5 -1 O.2]', and w(*, = 1. Fig. 5 shows that the tracking 
of desired value, Y,, is in good quality. However, if w ( ~ )  = 4 ,  the 
feedback linearizing control system becomes unstable as shown in 
Fig. 6. This demonstrates the case (iii) of theorem 1 .  
case (b)- estimating D(x) on-line by neural network 

Consider that the sequence of training input for the neural 
network is generated by sending the random signal r(k) uniformly 
distributed in the interval [-26, 341 through the lowpass filter (30) 
with sampling period T = 0.01 sec. ~ ( x )  is estimated by training 
the neural network for 30000 steps. Fig. 7(a) shows the 
satisfactory response of the system subject to the controller (40) 

even for w ( ~ ,  = 4.  Fig. 7(b) shows that D(k) is not precisely equal 

case (c)- effect of noise 
To investigate the effect of noise on the approximated 

incremental linearizing control, a noise n( t )  = 0.3sin(20t) is 
superposed on the output of the plant. Fig. 8 shows the output 
response of the system by using the control law 

to D ( x ) ( k ) '  

AU(k) = D&Y(k-I) + 40W(k) - lo&-I) - 40Y(k-,)l (43) 
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5 

where yk, = ~ u , ( k T  - i) and Dtk) is the estimation of D(x),,, 

being obtained by the neural network. The desired closed-loop 
characteristics is described by 

The result depicts that the approximated incremental linearizing 
control can achieve good performance even in the presence of 
severe output noise. 

1x0 

ji, + 1 Oy,  + 40y, = 40w (44) 

6. Conclusion 
Using output feedback and the learning ability of multilayer 

networks, it has been shown that the input-output linearization of 
affine nonlinear systems can be succeeded without mathematically 
modeling the nonlinear behavior. The configurations for the 
training and control of approximated exact and incremental 
linearizing control laws have been established. The incremental 
linearizing control is able to relax the tolerance of estimating error 
introduced by the neural network due to absence of internal states, 
disturbance of noise or inadequate capacity of the network itself. 
All the establishments are based upon that the affine nonlinear 
system being with exponentially stable zero dynamics. Given a 
nonlinear problem, there are still questions about what capacity of 
a neural network is necessary by the neural-network-based design 
left to be answered. As a conclusion, the approach with output 
feedback and neural learning has made feedback linearizing 
control more practical. 

8 5  
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Fig. 5 Response when D,,, = 1, wl 
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Fig 7 Stable results when estimating D(x) as fi,,, 

fg 8 Response when disturbed by noise 
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