
A Simulation-Based Temporal Assertion Checker for PSL
Kai-Hui Chang, Wei-Ting Tu, Yi-Jong Yeh, and Sy-Yen Kuo

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
sykuo@cc.ee.ntu.edu.tw

Abstract
A simulation-based temporal assertion verification

engine for PSL (Property Specification Language),
called Tempral Wizard, is proposed in this paper. It is
very efficient because its time and space complexity are
both O(n). A new concept, tag, is introduced in Tempral
Wizard and it handles the forall operator elegantly.

1. Introduction
Many circuit designs exhibit temporal behaviors. In

the past, there was no good solution to express rules for
these temporal behaviors and it was difficult to verify
them. As the complexity of circuits increases, it becomes
more and more important to find a way to express and
verify these temporal rules [1 . There are several vendors
providing various solutions, such as OpenVera [21 from
Synopsis and E from Verisity [3]. Recently, the IBM
Sugar has been adopted as a formal specification
language called PSL(Property Specification Language)
[4]. PSL can be used for both formal and simulation-
based verification tools, and a simple subset is defined
for simulation-based verification. In this paper, a
simulation-based verification engine, called Temporal
Wizard, is proposed for the simple subset. It provides a
set of Verilog user-defined system tasks/functions (USTF)
and is compatible with all Verilog simulators which
support PLI. A new concept, tag, is introduced in
Temporal Wizard and it handles the forall operator
elegantly. Compared with some state-machine based
temporal logic checkers [5][6], Temporal Wizard
enhanced the power of temporal assertion checkers
significantly. Its time and space complexity is O(n) and is
very efficient.

2. Thread, Tag and Sequence
2.1 Terminology

Assertion: A statement that a given property is
required to hold and a directive to verification tools to
verify that it does hold.

Check: The execution of the auxiliary process that
monitors simulation of a design and reports success or
failure when asserted properties do or do not hold.

Event: An event can be produced by a variable or a
Sequence. For variable, if clock is specified, an event is
said to occur when the value of the variable is sampled
one at the clock edge. If no clock is specified, then an
event is said to occur when the value of the variable
becomes one. For Sequence, an event occurs when the
thread corresponding to the Sequence terminates, which
may either succeed or fail.

Sequence: A textual representation of temporal
assertions. Each Sequence corresponds to a Verilog
USTF. It is the basic element in Temporal Wizard. All
temporal assertions are written in Sequence USTF in
Temporal Wizard.

Tag: Data that is associated to a variable and carried
by a thread.

Trigger: The start of a Sequence checking.

2.2 Thread
Thread is the data structure created dynamically

during simulation for a particular Sequence. When an
event occurs, the threads waiting for the event will be
evaluated, and corresponding actions will be taken.
When the first event of a Sequence occurs, a new thread
is generated for further checking of this temporal logic
assertion. This process is called "spawn a thread."

Once a Sequence checker is triggered, there may be
several streams of events being checked at the same time.
For example, if events "a b c d e" are expected to occur
in sequence, and the events occur in the order "a b c d a
b", then there will be two possible event streams that
satisfy the rule, each has its own state. One has events "'a
b c d" checked, and the other has events "a b" checked. If
"e"9 occurs, the first Sequence stream will finish
successfully, but the partially checked "a b" will be left
intact. Later if "c d e" occur, the Sequence stream will
generate a successful event when it fiinishes. See Figure I
for detailed description about thle examplc.

New thread is
........ spawnede tenISe a Tccuhe .

cari b t dth ea e ble Ford e
...................................... .
Stet)2: e ocr
................. .

[a |b | d |e bc-l |d e

ThreadlI: Succeeds Thread2
Figure l. Example Event Stream.

2.3 Tag
Since there may be several threads spawned from the

same Sequence, it will be very useful if some data can be
caffied by the thread and be reused later. For exam-ple, if
we want to express the following temporal rule, we have
to pick some value and carry it with the temporal flow for
later comparison or use:

0-7803-8294-3/04/$20.00 ©2004 IEEE 1528

Event2 should occur after event), and variable V
should have the same value when either event occurs.

In this case, we should pick the value of V when
eventl occurs and compare it with variable V when
event2 occurs.

This is why Sequence tag is necessary. A tag is a
data handler in Sequence that can be used to attach a data
with a Sequence thread. It is always associated with a
variable. It can be used to save data to a Sequence or
load data from a Sequence. It can also be used to qualify
an event.

2.4 Use of Tag for Forall
One important usage of tag is to reduce the time and

space complexity that the PSL forall operator brings.
In ordinary checkers which do not have tags, the

forall operator is expanded. For example, in the
following assertion:

Forall i in 1..3: request && (data_in == i) -> next
(data-out == i)

Ordinary checkers will expand it to three rules for i=
1..3. But with tag, only one rule is necessary. The value
of data_in will be saved in the tag when request occurs,
and it will be compared with data_out at the next clock
cycle.

2.5 Temporal Wizard Usage
A complete Sequence definition has three blocks:

Assertion definition, Sequence trigger, and result
handling. Assertions are written in the Verilog tasks
provided by Temporal Wizard. Sequence trigger is done
by the $tb_seq_trigger task. It has two arguments: The
first one is the Sequence handle returned in assertion
block, and the second one is the result variable. After a
Sequence is triggered, the check starts immediately. If the
assertion fails, bit I of the result variable toggles. If the
assertion succeeds, bit 0 toggles. Result handling should
be based on the result variable. A typical usage of
Sequence is given in Figure 2. In the example,
$tb_seq_range is used for the assertion that event2 should
occur between 1 to 2 clocks, and $tb_seq means eventl
and the assertion represented by handlel should occur in
sequence. Hence the assertion says that event2 should
occur within I to 2 clocks after event 1 occurs.

11 Sequence Definition Block
handlel= $tb_seq_range(clock, $tb_range(1, 2),
event2);
handle2= $tb_seq(clock, eventl,handle2);
l/ Sequence Trigger Block
$tb_seq_trigger(handle2, result-variable);
ll Result Handling Block
always @(result_variablel1])

$display("Assertion failure");
always @(result_variable[O])

$display("Assertion Success");

Figure 2. Typical Sequence Usage.

2.6 PSL to Sequence Converter
A PSL to Sequence converter is provided as the

bridge between PSL and Temporal Wizard. With the
converter, PSL assertions can be converted to a Verilog
module that can be included in the design directly. The
inputs of the module are the signals we are monitoring.
Clock and reset ports are also included to control the
behavior of the verification module.

An example of the verification module is given
below:

PSL:
always ((signal-aJ 1->
((signal_b;signal_b)[*3..5J;signal_c/) @(posedge
clock);

Verfication module:
module Verification_unit(clk, rst, signal_a, signal_b,
signal_c);
Sequence definition

endmodule

Design module:
'include Verification_unit
module Design(...);

Verification_unit Assertions(clk, rst, signal-a, signal_b,
signal_c);
endmodule

The flow to generate the verification module is given
in Figure 3.

Figure 3. Flow to Generate Verification Module.

3. Temporal Wizard Implementation

3.1 Data Structures
Temporal Wizard has two main data structures:

Sequence and Thread. An example of Sequence structure
is given in Figure 4. The Sequence it represents is:
hi = $tb_seq-range($tbposedge(clk), $tb_range(2, 4),
e4);
h2= $tb&seq($tb&posedge(clk), el, e2, hi, e3);

152'

Sequence
(h2)

Events

Seq_threads

Clock: clk

Range: null

I.

Sequence
(hi)

Events

Seq_threads

Clock: clk

Range: (2,4)

... I

Figure 4. Example Sequence.

3.2 Algorithms
When the first event of a Sequence occurs, a thread

for it will be created. That thread will monitor some
events. When those events occur, the thread will be
evaluated, and Sequence-specific actions will be taken.

There are several types of Sequences defined in
Temporal Wizard, including serial, temporal constraint,
order constraint, flow control, logic arithmetic, thread
control, and tag control. In general, a thread has four
stages in its life cycle: Setup, evaluate, execute and
finalize. In setup, the thread is created. In evaluate, the
thread waits for events to evaluate itself. In execute, the
program counter is advanced to the next event. In finalize,
some clean-up is done and the thread is destroyed.

A Sequence thread has two states: Active and
inactive. In active state, the thread is waiting to be
evaluated. In inactive state, the thread is not waiting for
any event and is waiting for its child thread to resume
itself. The life cycle of thread is given in Figure 5. In the
figure, PC means Program Counter, which is the
execution state of the thread.

.

PC-Next=

Incie SequenceAL I

,
-- - -- - r -- - -

....;.

C-Kild thread
t

Finalize Se.up
*iaie Setup:

Detailed algorithm for serial, temporal constraint,
and order constraint are illustrated in the following
subsections. Note that a Sequence can also be an event
that a thread monitors.

3.2.1 Serial Sequence
The USTF provided for serial constraint sequence is:
seq_handle = $tb&seq(clock, list of events)
It specifies a list of events that should occur in

sequence. It contains a linked list of events. For example,
if event "A B C" should occur in a series, then it contains
a linked list of these events.

The thread for it contains a Program Counter (PC)
which points to the event it is waiting for and moniitors
that event. When that event occurs, the callback
mechanism will evaluate the thread, and the PC will point
to the next event. If it is the last event in the Sequence,
then the thread terminates successfully. See Figure 6 for
example checking status of the sequence "A B C D E". In
the example, there are two partially checked threads. One
is waiting for event B, and the other one is waiting for
event E.

. Callback doubly
I

linked list of b
Figure 6 S s

Figure 6. Serial Sequence Execution.

3.2.2 Temporal Constraint Sequence
The USTF provided for temporal constraint

sequence is:
seq_handle = $tb_seq_range(clock, range, eventt)

Figure 5. Life Cycle of Thread.

1530

It specifies the constraint that an event should occur
within in a clock range. For example, event "A" should
occur between 3 and 5 clocks from now. The Sequence
contains the event and the clock to monitor. The range of
the clock is also saved in it.

The thread for it contains a counter for the number
of clocks. It monitors the event and the clock. When the
clock event occurs, the counter increases. If the event
occurs within the clock range, the thread terminates
successfully. Otherwise it fails.

3.2.3 Order Constraint Sequence
The USTF provided for order constraint sequence is:
seq_handle = $tb_seq before(eventJ, event2)
It specifies that an event should occur before the

other one. For example, that event "A" should occur
before event "B." Two events and the clock to sample
them are saved in this Sequence.

The thread for the Sequence monitors the two events.
If the first event occurs before the second one, then the
thread terminates successfully; otherwise it fails.

3.3 Time and Space Complexity Analysis
For a temporal assertion, if there are n events, then at

most n threads will be created. When an event occur,
there will be at most n threads to be evaluated, each
evaluation takes constant time. So the time and space
complexity for an assertion are both O(n).

3.4 Benchmarks and Comparisons
Besides Sequence, Cadence NC-Verilog also offers

ABV (Assertion-Based Verification) [7] that supports
PSL language. It can simulate design with PSL assertions
internally or externally. For assertions with a small
number of events, the running time remains small and is
similar between Temporal Wizard and NC-ABV.
Therefore the repeat operator is used to create an
assertion with a large number of events.

The benchmark is done on Redhat 7.2. The version
of NC-Verilog is 5.00-bO06, and the CPU is Pentium 4
1.6G. In the benchmark, the Sequence code is produced
by the PSL-to-Sequence converter.

PSL:
always((signa_bJlI-> (signal-al*REPEAT_TIMESJJ)
@(posedge clk);
Note: REPEAT_TIMES is the number of times that
signal_a repeats.

Sequence:
hi = $tb_seq_range_start($tb_posedge(clk), I,signal-a);
h2 = $tb_seq_repeat(REPEAT_TIMES - I,h1);
h3 = $tb_seq_now(signal_a);
h4 = $tb_seq($tb_posedge(clk), h3, h4);
h5 = $tb_seq($tb_posedge(clk), signal_b);
h6 = $tb_seq_implyO(hS, h4);

Stimulus:
Signal_a is always 1.

Signal_b period is 80ns, initilized to 0.
Clock period is lOns, initialized to 0.

Sequence NC-ABV
REPEAT_TIMES Running Time Running Time

(sec) (sec)
1 0.280 0.270
10 0.610 0.480
100 3.260 5.730
1000 35.780 399.580
10000 276.610 34479.180

From the experimental results, it can be observed
that the running time of Temporal Wizard is O(n), while
NC-ABC seems to be O(n2). Compared with NC ABV,
Sequence is more powerful. First, Sequence reports
assertion success as well as failure, while NC only
reports failure. Second, the performance of Temporal
Wizard is better than NC ABV.

4. Conclusion
A temporal assertion checker for the simple set of

PSL, called Temporal Wizard, is proposed in this paper.
Its algorithm and data structures are also described. A
new concept, tag, is introduced in this checker to handle
the forall operator more elegantly. With tag, the time and
space complexity of Temporal Wizard remains O(n) and
is vert efficient. The approach to convert PSL to Verilog
USTF makes Temporal Wizard compatible with all
Verilog simulators which support PLI and it makes
Temporal Wizard easy to use.

5. References
[11 Don MacMillen, Michael Butts, Raul Composano,

Dwight Hill, and Thomas W. Williamts, An
Industrial View of Electronic Design Autoination,
IEEE Tranc. on Computer-Aided Design of
Integrated Circuits and Systems, Volume: 19 Issue:
12, Dec 2000

[21 Synopsis, OpenVera 1.0 Language Reference
Manual Versibn 1.0, Mar. 2001

[3] Verisity, e Language Reference Manual Version
3.2.1, 1999

[4] Accellera, Property Specification Language
Reference Manual, Version 1.0, Jan. 2003

[51 Koji Ara and Kei Suzuki, A proposal for transaction-
level verification with component wrapper language,
Design, Automation and Test in Europe Conference
and Exhibition, 2003

[6] Ajay J. Daga and William P. Birmingham, A
symbolic-simulation approach to the timing
verification of interacting FSMs, Computer Design:
VLSI in Computers and Processors, Proceedings on
1995 IEEE International Conference, 1995

(7] Cadence, Writing and Using Assertions in Cadence's
Dynamic Assertion-Based Verification for NC-
Verilog Version 4. 1, May. 2002

1531

