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ABSTRACT - 

 In this paper, we propose a new pipelining extended 
Givens Rotation Recursive Least Square (PEGR-RLS) 
architecture using look-ahead technique. The 
square-root-free forms of QRD-RLS are also difficult to 
pipeline. The PEGR-RLS algorithm (referred to as Scaled 
Tangent Rotation, STAR-RLS) is designed such that 
fine-grain pipelining can be accomplished with little 
hardware overhead. Similar to STAR-RLS, this algorithm 
is not exactly orthogonal transformations but tends to 
become orthogonal asymptotically. This algorithm also 
preserves the desired properties of the STAR-RLS 
algorithm. Specifically, it can be pipelined at very low 
forgetting factor by using extended look-ahead. Simulation 
results are presented to compare the performance of the 
STAR-RLS, QRD-RLS, and LMS algorithms.  

1. Introduction 
Adaptive filtering has wide applications in channel 

equalization, system identification, Beamforming, and 
image processing. A typical channel equalizer scheme is 
shown in Fig. 1. The idea of systolic arrays was developed 
by Kung and Leiserson (1978) [1] and with its new and 
exciting avenue for matrix-oriented inversion.  

Here, a desired signal d(n) is transmitted over a noisy 
channel. The goal of the channel equalizer is to recover 
d(n) from u(n). This is done by passing the received signal 
through a filter whose weights are determined by the 
adaptive filter. During the training phase, both d(n) and u(n) 
are known. An adaptive algorithm is employed to adapt the 
filter weights to the channel characteristics. After the 
training phase, the weights converge to the channel 
characteristics and the weights can then be used to process 
the actual data. The QRD-RLS and STAR-RLS algorithms 
[2]-[5] are the most promising RLS algorithms since it is 
known to have very good numerical properties and can be 
mapped to a pipelined systolic array. This algorithm is, 
hence, very suitable for VLSI implementation. 
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Fig. 1. Adaptive channel equalizer scheme in digital 
communication. 

 
 The speed of the algorithm is, however, limited by the 
time required by the individual cells. The computation of 
each cell contains recursive operations, and hence, the 
operations within a cell cannot be pipelined, i.e., finegrain 
pipelining cannot be achieved in this case. To increase the 
speed of the QRD-RLS, we could use the lookahead 
method [6], [7] or block processing techniques [8]. Using 
lookahead in QRD-RLS results in large hardware overhead. 
Consequently, this technique is not practical for the 
QRD-RLS algorithm. Block processing was used to speed 
up the QRD-RLS in [8]. However, the hardware will 
increase linearly with speedup and, hence will be 
expensive. There are square-root free forms of QRD-RLS, 
which are more computationally efficient than the original 
algorithms (see [10]-[11]. Recently, other fast QRD-RLS 
algorithm based on Givens rotations was introduced in 
[12]. These algorithms also have the same pipelining 
difficulty as the QRD-RLS algorithm. Thus, our aim is to 
pipeline the RLS algorithm with little increase in hardware 
for all of the forgetting factors. The overhead due 
lookahead has some disadvantages in hardware 
implementation has already be discussed before mentioned. 
Thus, we use delay relaxation to overcome the overhead of 
recursive loops in systolic array architecture implemented 
PEGR-RLS algorithm. The price paid for this is a limited 
loss of convergence rate depending on the speedup used. 
2. Systolic-Array-Based Recursive Least Square 
Algorithms 
A. Background and Notation  
In least square (LS) filtering, the desired response d(n) is 
estimated as the weighted sum of the present sample and a 
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few of the past samples. The input data is a 1×M row 
vector whose individual entries denoted by U(i) 
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Consider also a known column vector w  and a 
positive-definite weighting matrix .0Π The objective is to 
determine an M×1 column vector w, also known as the 
weight vector, so as to minimize the weighted error sum: 
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where λ is a positive scalar that is less than or equal to one 
).10( ≤<< λ It is often called as forgetting factor since 

past data is exponentially weighted less than the more 
recent data. The special case λ = 1 is known as the 
growing memory case, since, as the length N of the data 
grows, the effect of the pass data is not attenuated. The 
error vector e(n) is expressed as 

)()()()()()( nwnundnyndn T−=−=ε     (4) 
where w(n) is the desired weight vector and d(n) is the 
desired response vector, defined similar to (1). The weight 
vector w(n) is chosen so as to minimize the index of 
performance E(n), where  

∑
=

− Λ=Λ==
n

i

Tin nnnnnienE
1

22/12 )()()()()()()( εεελ  (5) 

where λ is an exponential weighting forgetting factor 
and Λ(n) is an n×n diagonal exponential weighting matrix 
defined by 
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Then, the optimal solution is obtained by solving the 
known normal linear system of equations [14], 
 

)()()( npnwnR o =            (8) 
where R(n) is the correlation matrix of the tap input vector, 
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p(n) is the data correlation between data vector and the 

desired signal, given by 
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Exploiting the matrix inversion lemma, the RLS algorithm 
can be computed using the following state-space 
equations: 
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This is the special case of Kalman filter [8], with the 
following quantities, 
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With the RLS problem we also related to Kalman filter 
innovation e(n), which is defined by e(n) = y(n) – 
u(n)w(n-1). Its variance is denoted by ).(nγ  The a priori 

error )(nMξ , and the a posteriori error, )(neM  are 
denoted as 
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respectively. Then, the RLS error can be expressed by 
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This means that the so-called conversion factor, 
),(1 n−β that converts the a priori error )(nMξ  to the a 

posteriori error ).(neM  
 
B. The square-root QRD-RLS Algorithm 

The QRD-RLS is known to have excellent numerical 

properties due to the choice of the weight vector w(n) to 

minimize the cost function E(n). It is important to note 

that the data matrix A(n) is always assumed to have full 

column rank. The QRD-RLS algorithm is summarized 

here.  

1) For n > m, perform the following update: 
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where Q(n) is an n×n orthogonal matrix, R(n) is the m×
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m upper triangular matrix resulted from QR 

decomposition, p(n) is a m×1 vector. Angle normalized 

estimation error is denoted by ε(n) and the 

corresponding conversion factor is γ(n). 

2) The a priori, a posteriori estimation error and weight 

vector are computed as 

)(/)()( 2/1 nnnM γεξ =                (15) 

)()()( 2/1 nnneM γε=                  (16) 

).()()(ˆ 1 npnRnw −=                  (17) 

To annihilate the vector uT(n) in (14), Q(n) is computed as 

a product of a sequence of Givens rotations, specifically, 

we write  
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where i, j denotes the rows that will be affected when the 

Givens rotation matrix is premultiplied to R(n-1) while k 

gives the fact that input data in column k of uT(n) will be 

annihilated, and c and s are computed as 
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To pipeline the QRD-RLS systolic array at fine-grain level, 

a block updating scheme of the recursive computation is 

formulated with block size M [14]-[15]. Specifically, input 

data vectors from clock cycle n-M+1 to n are used to 

estimate the desired response d(n). In order to achieve an 

exact exponential weighted LS solution, the forgetting 

factor λ is included in the formulation: 
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where the QM(n) is computed as 

)1()1()()( +−−= MnQnQnQnQM L      (21a) 

where QM(n) follows the definition of (18). We also define   
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It is worth mentioning here that no matter how we choose 

the order of annihilation, e(n) will always stay the same 

and is equal to e(n) computed when the filter is not 

pipelined [15]. It is important that we rewrite the 

orthogonal matrix QM(n) is 
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where A (n) is an m×m matrix, )(1 nβ  and )(2 nβ  are 

both m×M matrices, and )(3 nβ  is an M×M square 

matrix. Now we need to preserve the following three 

lemmas and theorems. 

 Lemma 1 [15]: Given an upper triangular matrix 

R(n-M) with positive diagonal elements and ),(nU T
M as 

defined in (20), the corresponding A(n) and )(2 nβ  

defined in (22) are constant matrices. 

 Lemma 2 [15]: Given an upper triangular matrix 

R(n-M) with positive diagonal elements and ),(nU T
M as 

defined in (20), the corresponding )(3 nβ  defined in (22) 

is nonsingular. 

 Lemma 3 [15]: Given an upper triangular matrix 
R(n-M) with positive diagonal elements and ),(nU T

M as 
defined in (20), the product )(33 nT ββ  is a constant 
matrix.  
 Theorem 1 [15]: The system in (11)-(12) can 
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provide exact LS a posteriori estimation error vector, 

defined in (23b), which is computed as 

)()()( 3 nnne M
T
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where )(neM  is defined as 
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Theorem 2 [15]: The system in (11)-(12) can 

provide exact LS a priori estimation error vector, defined 

in (24b), which is computed as 
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Theorem 3 [15]: With an additional postprocessor 

added to the standard triangular array processor, the 

system in (11)-(12) is able to provide exact weight vector 

and a posteriori estimation error simultaneously (if d(n) is 

not in the column space of A (n)). 

Applying the system in (10)-(12) to Kalman square-root 

information filters [8] is straight-forward since there is a 

one-to-one mapping between QRD-RLS variables and 

state-space variables. A signal flow graph (SFG) for 

updating an element in matrix R(n-3) and a complete, 

3-level pipelined QRD-RLS filter architectures can be 

found in [14]. The systolic array implementation is shown 

in Fig. 2(a). The non-recursive part of the systolic array 

structure can be pipelined easily. However, the speed (or 

sample rate) is still limited by the local recursive equation 

to update the content of the cell as 

)()()1()()( 2/1 nunsnrncnr in+−= λ      (26a) 

where r(n) is the cell content in the systolic array 

architecture, while c(n) and s(n) are the cosine and sine 

parameters of the Givens rotation, respectively. Applying L 

levels of the look-ahead pipelining [6], we obtain 
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Thus, applying look-ahead pipelining in the recursive loop 

will result in a large amount of hardware overhead. The 

large complexity arises because the recursive equation 

contains a time-varying coefficient, namely λ1/2c(n). 
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Fig. 2(a) Three-level fine-grain systolic implementation of the Pipeling Extended 
GR-RLS algorithm
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C. STAR-RLS Algorithm 

To overcome the problem of large hardware overhead in 
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pipelining the QRD-RLS algorithm, a scaled tangent 

rotation [2] has been proposed. The detail derivation of 

tangent of the STAR algorithm can be referred to [2]. 

Thus, we omit it here to save space. 

3. PEGR-Recursive Least Square Filter (PEGR-RLS) 

In this section, we will use a mathematical equation 

to approximate a square root equation, and a modified 

Givens Rotations Matrix is derived. We know that 

recursive equation within boundary cell within systolic 

array as implemented QRD-RLS algorithm is 
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Now, consider two cases. One is 
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Neglecting the higher order terms, (28c) be rewritten as  
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When PEGR-RLS algorithm reaches a steady state, we can 

find something from (28a) that r(n) and r(n-1) have the 

same positive sign. So (30) can be got 
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(31) is compared with (25), and we can find new modified  
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Accordingly, from (32a) to (32d), we can get the first 

extended Givens rotations as 
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(II) Case B): )1()( 2/1 −< nrnuin λ  

Because case B, we can get an equation as 

)()1( 22 nunr in<−λ . 

After using use Taylor series expansion [13], we can 

approximate (28c) as  
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When PEGR-RLS algorithm reaches a steady state, we can 

get 
)()1()( 1 nxnrnr α=−=     (34a) 

where 

.21 1 << α       (34b) 

It is the reason that we want to get a pipelined EGR-RLS 

algorithm, so we let α1 ≅ 1 in (34). From (28c), we can 
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find that r(n) and r(n-1) have the same sign. Thus, (33) can 

be rewritten as .
2

)1()()( −+≅ nrnxnr  Compared with 

(34), we can obtain the second relaxed c(n) and s(n), 

respectively 
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From (35a) to (35d), we get the second extended Givens 

rotations as 
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Before we discuss the maximum approximation error, we 

first analyze r(n) and x(n) when they are reached steady 

state. We modified the (35a) as  
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When the algorithm is reached steady state, we can assume 

r(n) = r(n-1). Thus, we can obtain 
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The maximum approximation error is occurred when 
)()1(2/1 nxnr =−λ                     (39) 

and using (37)-(39), we find that λ  = 1/2. But the 
simulation result is shown that extended Givens rotation 
RLS algorithm is close to QRD-RLS algorithm when λ 
= 1/2. The function of processing element within systolic 
array is shown in Fig 3(a). The boundary cell and internal 
cell, which are used, relaxed Givens rotations block 
diagram is shown in Fig 4 and Fig 5, respectively. 
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non-pipelined EGR-RLS. 
 

4. Simulation Results 

The simulation example has been used in [4] and it 

was conducted using the 11-tap equalizer. Its block 

diagram is shown in Fig 1. A random binary sequence d(n), 

which takes values +1 or –1, is used as the input to the 

channel. The channel has an impulse response of a raised 

cosine 
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Fig. 5(a). The architecture of Boundary Cell for PEGR-RLS with 
pipeline level (p = 5). 

 
Fig. 5(b). The architecture of Internal Cell for PEGR-RLS with 
pipeline level (p = 5). 
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where W is the amplitude of noise, and is chosen to be 3.3. 

The output of channel u(n) is given by 
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where x(n) is the additive noise, which is modeled to be a 

Gaussian zero-mean random variable with a variance 

2
xσ = 0.001. The signal d(n) is used as the desired signal 

for the algorithm. In Fig 6, we can compare the 

convergence of the mean squared error for the STAR-RLS, 

QRD-RLS, and PSTAR-RLS algorithms. 

 
Fig 6. Simulation results for QRD-RLS, STAR-RLS, and 

PSTAR-RLS algorithm. 
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Fig. 7. Simulation results of QRD-RLS, STAR-RLS, and 

EGR-RLS algorithm for 3 different forgetting factors withλ= 

0.02, 0.5and 0.98, respectively. 
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Fig. 8. Simulation results of QRD-RLS, STAR-RLS, and 

PEGR-RLS algorithms for 3 different forgetting factors withλ= 

0.02, 0.5 and 0.98, for p = 2 & 5, respectively. 

5. Conclusions 
The plots for the PSTAR-RLS algorithm are shown 

for speedups of 5 and 10 times. There is a gradual 
degradation in convergence rate with higher speedup, as 
would be expected. However, at all speedups, the 
steady-state error does converge finally to that of the serial 
algorithm. The retiming technique is the method we adopt 
to change the locations of delay elements in a circuit 
without affecting the input/output characteristics of the 
circuit. The lookahead, delay relaxation, and retiming 
methods are the core pipelining technology to implement 
the PEGR-RLS. Specifically, it can be pipelined at very 
low forgetting factor by using extended look-ahead. 
Simulation results are presented to compare the 
performance of the STAR-RLS, QRD-RLS, and LMS 
algorithms. 
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