
 This work was supported by National Science Council
under NSC: 88-2216-E-002-018.

Pipelining Extended Givens Rotation RLS Adaptive Filters

Shing Tenqchen1&**, Ji-Horn Chang*, Wu-Shiung Feng* and Bor-Sheng Jeng**

1Lab 331, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.

*Department of Electronics Engineering, Chang Gung University, Taoyuan, Taiwan, R.O.C.

**Chunghwa Telecom Telecommunication Labs., 12, Lane 551, Sec. 5,

Min-Tsu Rd., Yang-Mei Zien, Tao-Yuan County, Taiwan 326, R.O.C.

E-mail: d86028@cad.ee.ntu.edu.tw and stc@cht.com.tw

ABSTRACT -

 In this paper, we propose a new pipelining extended
Givens Rotation Recursive Least Square (PEGR-RLS)
architecture using look-ahead technique. The
square-root-free forms of QRD-RLS are also difficult to
pipeline. The PEGR-RLS algorithm (referred to as Scaled
Tangent Rotation, STAR-RLS) is designed such that
fine-grain pipelining can be accomplished with little
hardware overhead. Similar to STAR-RLS, this algorithm
is not exactly orthogonal transformations but tends to
become orthogonal asymptotically. This algorithm also
preserves the desired properties of the STAR-RLS
algorithm. Specifically, it can be pipelined at very low
forgetting factor by using extended look-ahead. Simulation
results are presented to compare the performance of the
STAR-RLS, QRD-RLS, and LMS algorithms.

1. Introduction
Adaptive filtering has wide applications in channel

equalization, system identification, Beamforming, and
image processing. A typical channel equalizer scheme is
shown in Fig. 1. The idea of systolic arrays was developed
by Kung and Leiserson (1978) [1] and with its new and
exciting avenue for matrix-oriented inversion.

Here, a desired signal d(n) is transmitted over a noisy
channel. The goal of the channel equalizer is to recover
d(n) from u(n). This is done by passing the received signal
through a filter whose weights are determined by the
adaptive filter. During the training phase, both d(n) and u(n)
are known. An adaptive algorithm is employed to adapt the
filter weights to the channel characteristics. After the
training phase, the weights converge to the channel
characteristics and the weights can then be used to process
the actual data. The QRD-RLS and STAR-RLS algorithms
[2]-[5] are the most promising RLS algorithms since it is
known to have very good numerical properties and can be
mapped to a pipelined systolic array. This algorithm is,
hence, very suitable for VLSI implementation.

Channel ∑

Random-noise
generator(2)

Random-noise
generator(1)

Adaptive
transversal
equalizer

∑

Delay

na
v(n)

+
-

e(n)

Fig. 1. Adaptive channel equalizer scheme in digital
communication.

 The speed of the algorithm is, however, limited by the
time required by the individual cells. The computation of
each cell contains recursive operations, and hence, the
operations within a cell cannot be pipelined, i.e., finegrain
pipelining cannot be achieved in this case. To increase the
speed of the QRD-RLS, we could use the lookahead
method [6], [7] or block processing techniques [8]. Using
lookahead in QRD-RLS results in large hardware overhead.
Consequently, this technique is not practical for the
QRD-RLS algorithm. Block processing was used to speed
up the QRD-RLS in [8]. However, the hardware will
increase linearly with speedup and, hence will be
expensive. There are square-root free forms of QRD-RLS,
which are more computationally efficient than the original
algorithms (see [10]-[11]. Recently, other fast QRD-RLS
algorithm based on Givens rotations was introduced in
[12]. These algorithms also have the same pipelining
difficulty as the QRD-RLS algorithm. Thus, our aim is to
pipeline the RLS algorithm with little increase in hardware
for all of the forgetting factors. The overhead due
lookahead has some disadvantages in hardware
implementation has already be discussed before mentioned.
Thus, we use delay relaxation to overcome the overhead of
recursive loops in systolic array architecture implemented
PEGR-RLS algorithm. The price paid for this is a limited
loss of convergence rate depending on the speedup used.
2. Systolic-Array-Based Recursive Least Square
Algorithms
A. Background and Notation
In least square (LS) filtering, the desired response d(n) is
estimated as the weighted sum of the present sample and a

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

few of the past samples. The input data is a 1×M row
vector whose individual entries denoted by U(i)

[])()(...)()()()(12210 iuiuiuiuiuiU kk −−= (1)
and a data matrix A(n)

[]

==

−

−

−

)()()(

)2()2()2(
)1()1()1(

)(...)2()1()(

110

110

110

nununu

uuu
uuu

nUUUnA

K

K

K

T

L

MOMM

L

L (2)

Consider also a known column vector w and a
positive-definite weighting matrix .0Π The objective is to
determine an M×1 column vector w, also known as the
weight vector, so as to minimize the weighted error sum:

() [] ()

∑
=

−

−+−

−+

−Π−=
N

i

T
i

iN

NT

iwiuid

nwnwnwnwnE

0

2

1
0

)1(

)()()(

)()()()()(

λ

λ (3)

where λ is a positive scalar that is less than or equal to one
).10(≤<< λ It is often called as forgetting factor since

past data is exponentially weighted less than the more
recent data. The special case λ = 1 is known as the
growing memory case, since, as the length N of the data
grows, the effect of the pass data is not attenuated. The
error vector e(n) is expressed as

)()()()()()(nwnundnyndn T−=−=ε (4)
where w(n) is the desired weight vector and d(n) is the
desired response vector, defined similar to (1). The weight
vector w(n) is chosen so as to minimize the index of
performance E(n), where

∑
=

− Λ=Λ==
n

i

Tin nnnnnienE
1

22/12)()()()()()()(εεελ (5)

where λ is an exponential weighting forgetting factor
and Λ(n) is an n×n diagonal exponential weighting matrix
defined by

[] .

1000
0
00
00

1)(
2

1

21

==Λ
−

−

−−

OMM

L

L

L
n

n

nndiagn
λ

λ

λλ
 (6)

It then followed that
() []

.)(

))()(()()()(
2

2

2/1

1
0

)1(

N

nwnwnwnwnE

N

NT

ξ

λ

Λ+

−Π−= −+−
 (7)

Then, the optimal solution is obtained by solving the
known normal linear system of equations [14],

)()()(npnwnR o = (8)
where R(n) is the correlation matrix of the tap input vector,

),()()(nwnwnwo −= and R(n) defined as

∑
=

−=
n

i

TiN iUiUnR
1

).()()(λ (9)

p(n) is the data correlation between data vector and the

desired signal, given by

∑
=

−=
n

i

iN idiUnp
1

).()()(λ (10)

Exploiting the matrix inversion lemma, the RLS algorithm
can be computed using the following state-space
equations:

)()1(2/1 nxnx −=+ λ (11a)

)()()()(nnxnuny T ν+= (11b)
with

.))()((
,))0(cov(),0()0(),0()0(0

1

ijjvivE
xwxwx

δ
λ

=
Π=== − (12)

This is the special case of Kalman filter [8], with the
following quantities,

() ()
).0()0(),0()0(

,)()(,)()(

wxwx

nwnxndny nn

==

==
λλ

 (13)

With the RLS problem we also related to Kalman filter
innovation e(n), which is defined by e(n) = y(n) –
u(n)w(n-1). Its variance is denoted by).(nγ The a priori

error)(nMξ , and the a posteriori error,)(neM are
denoted as

)1()()()(−−= nwnundn T
Mξ

),()()()(nwnundne T
M −=

respectively. Then, the RLS error can be expressed by

() ()

)()(

)(
)()()(1

)()()(1)(ˆ)()()()(

)(1)]1()()([1)1(ˆ)()()(

1

1

nn

n
nunPnu

nunPnunxnundne

nnwnundnxnunyne

M

MT

T
Tn

M

Mn
T

n
T

ξβ

ξλ

ξ
λλ

−

+

=

+

−=−=

=−−=−−=

This means that the so-called conversion factor,
),(1 n−β that converts the a priori error)(nMξ to the a

posteriori error).(neM

B. The square-root QRD-RLS Algorithm

The QRD-RLS is known to have excellent numerical

properties due to the choice of the weight vector w(n) to

minimize the cost function E(n). It is important to note

that the data matrix A(n) is always assumed to have full

column rank. The QRD-RLS algorithm is summarized

here.

1) For n > m, perform the following update:

 −−
=

 −

1)()(
0)1()1(

)(
)()(0

)()()()(2/12/1

2/1

1

ndnu
npnR

nQ
nn

nunRnpnR
TT

λλ
γε

(14)

where Q(n) is an n×n orthogonal matrix, R(n) is the m×

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

m upper triangular matrix resulted from QR

decomposition, p(n) is a m×1 vector. Angle normalized

estimation error is denoted by ε(n) and the

corresponding conversion factor is γ(n).

2) The a priori, a posteriori estimation error and weight

vector are computed as

)(/)()(2/1 nnnM γεξ = (15)

)()()(2/1 nnneM γε= (16)

).()()(ˆ 1 npnRnw −= (17)

To annihilate the vector uT(n) in (14), Q(n) is computed as

a product of a sequence of Givens rotations, specifically,

we write

∏
=

+− +−=
m

k
nkm kmGnQ

1
,1)1()((18a)

row th

row th
)(,

j

i

I
cs

I
sc

I

kG ji

←

←

Ο
−

Ο

=
 (18b)

 ↑ ↑

 col. ith jth

where i, j denotes the rows that will be affected when the

Givens rotation matrix is premultiplied to R(n-1) while k

gives the fact that input data in column k of uT(n) will be

annihilated, and c and s are computed as

)1()1(

)1(
22

,

,
+−+−

−
=

knunR

nR
c

kk

kk (19a)

.
)1(
)1(

,

c
nR
knus

kk −
+−= (19b)

To pipeline the QRD-RLS systolic array at fine-grain level,

a block updating scheme of the recursive computation is

formulated with block size M [14]-[15]. Specifically, input

data vectors from clock cycle n-M+1 to n are used to

estimate the desired response d(n). In order to achieve an

exact exponential weighted LS solution, the forgetting

factor λ is included in the formulation:

∆

−−
+Λ=

ΓΟ

−

)()(
0)()(

)1(~)(

)()(
)()()()(

2/1

2/1

1

ndnU
MnpMnR

MnQ

nn
nunRnpnR

M
T
M

M

M
T
M ε (20)

where the QM(n) is computed as

)1()1()()(+−−= MnQnQnQnQM L (21a)

where QM(n) follows the definition of (18). We also define

)](,[)1(~ 2/ MIdiagM m
M Λ=+Λ λ (21b)

)]()1()1([)(ndndMndnd T
M −+−= L (21c)

)]()1()1([)(nunuMnunUM −+−= L (21d)

].1,,0[L=∆T
M (21e)

It is worth mentioning here that no matter how we choose

the order of annihilation, e(n) will always stay the same

and is equal to e(n) computed when the filter is not

pipelined [15]. It is important that we rewrite the

orthogonal matrix QM(n) is

Ο−
ΟΟ

Ο
=

)()(

)()(
)(

31

2

nn
I

nn
nQ

T
M

ββ

βA
 (22)

where A (n) is an m×m matrix,)(1 nβ and)(2 nβ are

both m×M matrices, and)(3 nβ is an M×M square

matrix. Now we need to preserve the following three

lemmas and theorems.

 Lemma 1 [15]: Given an upper triangular matrix

R(n-M) with positive diagonal elements and),(nU T
M as

defined in (20), the corresponding A(n) and)(2 nβ

defined in (22) are constant matrices.

 Lemma 2 [15]: Given an upper triangular matrix

R(n-M) with positive diagonal elements and),(nU T
M as

defined in (20), the corresponding)(3 nβ defined in (22)

is nonsingular.

 Lemma 3 [15]: Given an upper triangular matrix
R(n-M) with positive diagonal elements and),(nU T

M as
defined in (20), the product)(33 nT ββ is a constant
matrix.
 Theorem 1 [15]: The system in (11)-(12) can

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

provide exact LS a posteriori estimation error vector,

defined in (23b), which is computed as

)()()(3 nnne M
T

M εβ= (23a)

where)(neM is defined as

).()()()()(1 npnRnUndne T
MMM

−−= (23b)

Theorem 2 [15]: The system in (11)-(12) can

provide exact LS a priori estimation error vector, defined

in (24b), which is computed as

)()()(1
3 nnn MM εβξ −= (24a)

).()()()(MnpMnUndn T
MMM −−−=ξ (24b)

Theorem 3 [15]: With an additional postprocessor

added to the standard triangular array processor, the

system in (11)-(12) is able to provide exact weight vector

and a posteriori estimation error simultaneously (if d(n) is

not in the column space of A (n)).

Applying the system in (10)-(12) to Kalman square-root

information filters [8] is straight-forward since there is a

one-to-one mapping between QRD-RLS variables and

state-space variables. A signal flow graph (SFG) for

updating an element in matrix R(n-3) and a complete,

3-level pipelined QRD-RLS filter architectures can be

found in [14]. The systolic array implementation is shown

in Fig. 2(a). The non-recursive part of the systolic array

structure can be pipelined easily. However, the speed (or

sample rate) is still limited by the local recursive equation

to update the content of the cell as

)()()1()()(2/1 nunsnrncnr in+−= λ (26a)

where r(n) is the cell content in the systolic array

architecture, while c(n) and s(n) are the cosine and sine

parameters of the Givens rotation, respectively. Applying L

levels of the look-ahead pipelining [6], we obtain

∏ ∑
−

=

−

=

−−+−−=
1

0

1

0

2/).()()()()(
L

i

L

i

L inuinsincLnrnr λ (26b)

Thus, applying look-ahead pipelining in the recursive loop

will result in a large amount of hardware overhead. The

large complexity arises because the recursive equation

contains a time-varying coefficient, namely λ1/2c(n).

r11 r12

r
22

r13 p1

p
2

p
3

r
33

u(3)u(2)u(1)

Fig. 2(a) Three-level fine-grain systolic implementation of the Pipeling Extended
GR-RLS algorithm

r
23

γ

3D

3D

3D

3D 3D 3D 3D

3D 3D 3D

3D
3D

3D

1
11
−r

1
12
−r

1
13
−r

γ
1w

γ
2w

γ
3w

3D

3D

3D
 3D3D

3D

1
22
−r

1
33
−r1

23
−r

y(n)

G G

0

0

0

DDDD

GGe(n)

y(n) u(1) u(2) u(3)

0
G

x

z

y

z+xy

DD DD
00

0 0

00

c

c

c

3D 3D

c

c

c

Boundary Cell Internal Cell

rn(n)
rn(n)

θ1

θ2

θ3

Fig. 2(b) Boundary Cell

r(n)
))sin(),(cos(nn

)(nu

)(
)(sin(n) ,

)(
)1()cos(

)()1()(
2/1

22

nr
nu

nr
nrn

nunrnr

=−=

+−=

λ
λ

Fig. 2(c) Internal Cell

r(n)
))sin(),(cos(nn

)(nu

)(nb

))sin(),(cos(nn

)25()1()cos()()sin()(
)25()1()sin()()cos()(

2/1

2/1

bnrnnunnr

anrnnunnb

−+=
−−=

λ
λ

C. STAR-RLS Algorithm

To overcome the problem of large hardware overhead in

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

pipelining the QRD-RLS algorithm, a scaled tangent

rotation [2] has been proposed. The detail derivation of

tangent of the STAR algorithm can be referred to [2].

Thus, we omit it here to save space.

3. PEGR-Recursive Least Square Filter (PEGR-RLS)

In this section, we will use a mathematical equation

to approximate a square root equation, and a modified

Givens Rotations Matrix is derived. We know that

recursive equation within boundary cell within systolic

array as implemented QRD-RLS algorithm is

)()()1()()(2/1 nxnsnrncnr +−= λ (27)

)()1(22 nxnr +−= λ (28a)

2/1

2

2
2/1

)1(
)(1)1(

−

+−=
nr
nxnr

λ
λ (28b)

2/1

2

2

)(
)1(1)(

 −+=
nx

nrnx λ (28c)

Now, consider two cases. One is

A): ;)1()(2/1 −≥ nrnuin λ

and the other is
B): .)1()(2/1 −< nrnuin λ

(I) Case A):

Because of case A, we can express it as

.1
)(

)1();1()(2

2
22 <−

⇒−≥
nx

nrnrnu in
λλ

Then, we use Taylor series expansion for the function [13]

.1,
!2

)1(1)1(2 <

 +−++=+ xforxpppxaxa p L (29)

Neglecting the higher order terms, (28c) be rewritten as

.
)1(

)(
2
1)1(

)
)1(

)(
2
11)(1()(

2/1

2
1/2

2

2
2/1

−
×+−≅

−
×+−=

nr
nunr

nr
nunrnr

in

in

λ
λ

λ
λ (30)

When PEGR-RLS algorithm reaches a steady state, we can

find something from (28a) that r(n) and r(n-1) have the

same positive sign. So (30) can be got

.
)1(

)(
2
1)1()(2/1

2
2/1

−
×+−≅

nr
nu

nrnr in

λ
λ (31)

(31) is compared with (25), and we can find new modified

c11(n) and s12(n), respectively as

1)(11 =nc (32a)

and

.
)1(2

)(
2/112 −

=
nr

nxs
λ

 (32b)

Then, c22(n) and s21(n) also can be approximated as

1

)1(
)(

2
1)1(

)1(
)(

)1()(

2/1

2
2/1

2/12/1

22 ≅

−
×+−

−=−=

nr
nxnr

nr
nr
nrnc

λ
λ

λλ
 (32c)

.
)1(

)(

)1(
)(

2
1)1(

)(
)(
)()(2/1

2/1

2
2/1

21 −
≅

−
×+−

≅=
nr
nx

nr
nxnr

nx
nr
nxns

λ
λ

λ
(32d)

Accordingly, from (32a) to (32d), we can get the first

extended Givens rotations as

.
1

)1(
)(

)1(2
)(1

2/1

2/1

−
−

−

nr
nx

nr
nx

λ

λ

(II) Case B):)1()(2/1 −< nrnuin λ

Because case B, we can get an equation as

)()1(22 nunr in<−λ .

After using use Taylor series expansion [13], we can

approximate (28c) as

.
)(2

)1()(
)(

)1(1)()(
22/1

2

2

nx
nrnx

nx
nrnxnr −+≅

 −+= λλ (33)

When PEGR-RLS algorithm reaches a steady state, we can

get
)()1()(1 nxnrnr α=−= (34a)

where

.21 1 << α (34b)

It is the reason that we want to get a pipelined EGR-RLS

algorithm, so we let α1 ≅ 1 in (34). From (28c), we can

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

find that r(n) and r(n-1) have the same sign. Thus, (33) can

be rewritten as .
2

)1()()(−+≅ nrnxnr Compared with

(34), we can obtain the second relaxed c(n) and s(n),

respectively

2
)(

2/1

11
λ=nc

 (35a)

))(()(12 nxsignns = (35b)

)(
)1(

)(
)1()(

2/12/1

22 nx
nr

nr
nrnc −≅−= λλ

 (35c)

)).((
)(
)(

)(
)()(12 nxsign

nx
nx

nr
nxns =≅= (35d)

From (35a) to (35d), we get the second extended Givens

rotations as

.

)(
)1())((

))((
2

2/1

2/1

−−
nx
nrnxsign

nxsign

λ

λ
 (36)

Before we discuss the maximum approximation error, we

first analyze r(n) and x(n) when they are reached steady

state. We modified the (35a) as

)()1()(222 nxnrnr +−=λ (37)

When the algorithm is reached steady state, we can assume

r(n) = r(n-1). Thus, we can obtain

.1
)(
)(

2

2

λ−=
nr
nx

 (38)

The maximum approximation error is occurred when
)()1(2/1 nxnr =−λ (39)

and using (37)-(39), we find that λ = 1/2. But the
simulation result is shown that extended Givens rotation
RLS algorithm is close to QRD-RLS algorithm when λ
= 1/2. The function of processing element within systolic
array is shown in Fig 3(a). The boundary cell and internal
cell, which are used, relaxed Givens rotations block
diagram is shown in Fig 4 and Fig 5, respectively.

(a) Boundary Cell

r(n)

))(),((nsnc

)(nuin

(b) Internal Cell

r(n)

))(),((nsnc

)(nuin

)(nb

))(),((nsnc

end

inuinspnrr(n)

c(n)u(n)r(n-p)-s(n)λb(n)
else

inuinspnrnr

nrnsnuncnb

nunrif

in
i

p

i

ip
p

/

in
i

p

i

p

in

in

)()(
2

)(
2

)()()()(

)1()(2)()()(

)()1(

2/
1

0

2/11/2
2/

21

2/
1

0

2/

2/1

1/2

−−

+−

=

+=

−−+−=

−×−=

≥−

∑

∑

−

=

−

=

λλλλ

λλ

λ

λ

end

inuinspnrnr

nu
nrncnuns

else

inuinspnrnr

nr
nunsnc

nunrif

p

i
in

ip
p

in
in

p

i
in

p

in

in

∑

∑

−

=

−

=

−−

+−

=

−==

−−+−=

−
==

≥−

1

0

2/1
2/12/1

2/

1/2

1

0

2/12/

2/1

1/2

)()(
2

)(
2

)(

)(
)1()(,))((sign)(

)()()()(

)1(2
)()(,1)(

)()1(

λλλλ

λ

λλ

λ

λ

Fig. 3. Boundary cell and Internal cell for PEGR-RLS

÷

÷

 •

⊗
⊗

⊗

⊕ ⊗

) (•sign

1−Z

s(n)

c(n)1

2
1

u(n)

c(n)

2

2/1λ

2/1λ

r(n)

(a) Boundary Cell

)(nρ

)(nρ

1−Z

1−Z

1−Z

c(n-1)

)1(−nρ

s(n-1)

⊗⊗

⊗

⊕ ⊗

1−Z

c(n)

2

2/1λ
2/1λ

(b) Internal Cell

− ⊗

u(n)
c(n)
s(n)

⊗

)(nρ

1−Z

1−Z

1−Z)1(−nρ

s(n-1)
c(n-1)

2

1−Z

)1(−nb

Fig.4. The architectures of Boundary cell and Internal cell for
non-pipelined EGR-RLS.

4. Simulation Results

The simulation example has been used in [4] and it

was conducted using the 11-tap equalizer. Its block

diagram is shown in Fig 1. A random binary sequence d(n),

which takes values +1 or –1, is used as the input to the

channel. The channel has an impulse response of a raised

cosine

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

Fig. 5(a). The architecture of Boundary Cell for PEGR-RLS with
pipeline level (p = 5).

Fig. 5(b). The architecture of Internal Cell for PEGR-RLS with
pipeline level (p = 5).

 =

 −+=

otherwise 0,

,,n n
Whn

321,)2(2cos(1
2
1 π

where W is the amplitude of noise, and is chosen to be 3.3.

The output of channel u(n) is given by

),()()(
3

1
nxindhnu

i
i +−=∑

=

where x(n) is the additive noise, which is modeled to be a

Gaussian zero-mean random variable with a variance

2
xσ = 0.001. The signal d(n) is used as the desired signal

for the algorithm. In Fig 6, we can compare the

convergence of the mean squared error for the STAR-RLS,

QRD-RLS, and PSTAR-RLS algorithms.

Fig 6. Simulation results for QRD-RLS, STAR-RLS, and

PSTAR-RLS algorithm.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
1 0 -2

1 0 -1

1 0 0

1 0 1

1 0 2

1 0 3

It e ra t io n N u m b e r

M
ea

n
S

qu
ar

e
E

rro
r

Q R D -R L S
S TA R -R L S
R G R -R L S

Fig. 7. Simulation results of QRD-RLS, STAR-RLS, and

EGR-RLS algorithm for 3 different forgetting factors withλ=

0.02, 0.5and 0.98, respectively.

0 50 100 150 200 250 300 350 400
10-4

10-3

10-2

10-1

100

101

102

Iteration number

M
ea

n
S

qu
ar

e
E

rro
r

DR-PRGR-RLS(p=2)
DR-PRGR-RLS(p=5)
STAR-RLS
QRD-RLS
LMS
RGR-RLS

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

Fig. 8. Simulation results of QRD-RLS, STAR-RLS, and

PEGR-RLS algorithms for 3 different forgetting factors withλ=

0.02, 0.5 and 0.98, for p = 2 & 5, respectively.

5. Conclusions
The plots for the PSTAR-RLS algorithm are shown

for speedups of 5 and 10 times. There is a gradual
degradation in convergence rate with higher speedup, as
would be expected. However, at all speedups, the
steady-state error does converge finally to that of the serial
algorithm. The retiming technique is the method we adopt
to change the locations of delay elements in a circuit
without affecting the input/output characteristics of the
circuit. The lookahead, delay relaxation, and retiming
methods are the core pipelining technology to implement
the PEGR-RLS. Specifically, it can be pipelined at very
low forgetting factor by using extended look-ahead.
Simulation results are presented to compare the
performance of the STAR-RLS, QRD-RLS, and LMS
algorithms.

References

[1] Kung, H. T. and C. E. Leiserson, “Systolic arrays (for VLSI),”

Sparse Matrix Proc. 1978, Soc. Ind. Appl. Math., 1978, pp.

256-182. [A version of this paper is reproduced in Mead and

Conway, 1980].

[2] Raghunath, K.J.; Parhi, K.K. “Pipelined RLS adaptive

filtering using scaled tangent rotations (STAR)” Signal

Processing, IEEE Transactions on Vol. 44 10 , Oct. 1996 ,

Page(s): 2591 –2604.

[3] L.D. Van, "Design of efficient VLSI architectures: multipliers,

2-D digital filter, and adaptive digital filter," Ph.D. dissertation,

Dept. Elect. Eng., National Taiwan University, Taipei, Taiwan,

R.O.C., 2001.

[4] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ:

Prentice-Hall ,1986

[5] Keshab K. Parhi, VLSI Digital Signal Processing Systems:

Design and Implementation, John Wiley & Sons, Inc. 1999

[6] K. K. Parhi and D. G. Messerschmitt, “Pipeline interleaving

and parallelism in recursive digital filters—Part I: Pipelining

using scattered look-ahead and decomposition,” IEEE,

Trans. Acoust., Speech, Signal Prcossing, vol. 37, pp.

1118-1134, July 1989.

[7]. K. K. Parhi, and D. G. Messerschmitt, “Pipeline interleaving

and parallelism in recursive digital filters—Part II:

Pipelining incremental block filtering,” IEEE, Trans.

Acoust., Speech, Signal Prcossing, vol. 37, pp. 1099-1117,

July 1989.

[8] T. H. Y. Meng, E. A. Lee, and D. G. Messerschmitt,

“Least-squares computation at arbitrarily high speeds,” in

Proc. IEEE Int. Conf. Acoust., Speech Signal Processing

(ICASSP), 1987, pp. 1398-1401.

[9] A. H. Sayed, T. Kailath, “A State-Space Approach to Adaptive

RLS Filtering,” IEEE Trans. Signal Processing Magazine,

vol. 42, pp. 18-60, Jul. 1994.

[10] S. F. Hsieh, K. J. R. Liu, and K. Yao, “A unified

square-root-free Givens rotations approach for QRD-based

recursive least squares estimation,” IEEE Trans. Signal

Processing, vol. 41, pp. 1405-1409, Mar. 1993.

[11] W. M. Gentleman, “Least-squares computations by Givens

transformations without square-roots,” J. Inst. Math.

Applicat., vol. 12, pp.329-336, 1973.

[12] F. Ling, “Givens rotation based least-squares lattice and

related algorithm,” IEEE Trans. Signal Processing, vol. 39,

pp. 1541-1551, Jul. 1991.

 [13] G. J. Borse, Numerical Methods with MATLAB, A Resource

for Scientists and Engineers, PWS Publishing Company

1997.

[14] J. Ma, K. K. Parhi, and E. F. Deprettere, “Annihilation-

reordering look-ahead pipelined CORDIC based RLS

adaptive filters and their application to adaptive

beamforming,” IEEE Trans. Signal Processing, vol. 48, pp.

2414-2431, Aug. 2000.

[15] Z. Chi, J. Ma, K. K. Parhi, “Hybrid Annihilation

Transformation (HAT) for Pipelining QRD-Based

Least-Square Adaptive Filters”, IEEE Trans. On Circuits

and Systems –II, Analog and Digital Signal Processing, vol.

48, No. 7, pp. 661-674, Jul. 2001.

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

