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Abstract 
This paper presents the use of a variety of filters 

in the temporal trajectories of frequency band spec- 
trum to extract speech recognition features for envi- 
ronmental robustness. Three kind of filters for em- 
phasizing the statistically important parts of speech 
are proposed. First, a bank of RASTA-like band-pass 
filters to fit the statistical peaks of modulation fre- 
quency band spectrum of speech are used. Secondly, a 
three-channel octave band-iilter band with a smoothed 
rectangular window spline is applied. Thirdly, a data- 
driven filter is developed. Experimental results show 
that significant improvements for speech recognition 
using the proposed feature extraction approach under 
noisy environments can be achieved. 

1 Introduction 
The environmental robustness for a practical speech 

recognition system to real world applications is def- 
initely very importment because mismatch between 
training and test environments will cause serious 
degradation on the speech recognition performance. 
A variety of approaches for robust speech recognition 
wen propoged which can be classified into 4 categories 
: speech enhancement techniques, robust speech fea- 
ture extraction techniques, model-based compensation 
approaches and robust distance measure criterions[l- 
.4]. The RASTA (FklAtive SpecTrAl) method belong- 
ing to the second category was proposed to extract ro- 
bust speech features for recognition by processing tem- 
poral trajectories of frequency band spectrum using a 
band-pass iilter[5]. The principle of RASTA method 
comes from the human auditory perception which in- 
dicates the relative insensitivity of human hearing to 
slowly and quickly varying auditory stimuli[6]. Thus, 
the RASTA band-pass filter is designed with an IIR 
filter with a sharp spectral zero at the zero frequen- 
cy in the modulation frequency domain. On the other 

hand, the low cut-off frequency of this band-pass filter 
suppresses the spectral components that change more 
quickly than the typical range of change of speech. 

The most interesting point of RASTA method is to 
emphasize the important part of speech signal by hu- 
man hearing perception which is definitely more h- 
mune to noise. Grecn[6] indicated that a greater sen- 
sitivity of human hearing to modulation frequencies 
around 4 Hs to lower (or higher) modulation frequen- 
cies. Instead, this paper presents the use of a vari- 
ety of filters to replace the band-pass filter in RASTA 
method by the viewpoint of statistics of speech. First, 
we analyze the frequency response of temporal trajec- 
tories of frequency band spectrum for a large set of 
speech data to find the peak frequencies which are be- 
lieved to be more insensitive to noise. Then a bank of 
band-pass filters with pass bands carefuliy adjusted to 
the peak frequencies of the modulation frequency band 
spectrum are selected to emphasise these peak frequen- 
cies. In this way, a bank of RASTA-like filters for each 
frequency band component are obtained by adjusting 
the parameters of the one-pole IIR filter in the RASTA 
method. Secondly, in order to systematically design 
the multiple band-pass filters, a three-channel octave 
band-filter band with a smoothed rectangular window 
spline is used. Thirdly, a datadriven filter based on 
the frequency response of speech signal in modulation 
frequency domain is developed. 

The recognition of all the 1345 Mandarin syllables 
is taken as the example task for the experiments, 
which is the key problem for very-large-vocabulary 
Mandarin speech recognition. Typical channel distor- 
tion(convo1utional noise) in addition to Merent levels 
of additive white Gaussian noise are included in the 
tests. The experimental results show that the error 
rates can be immediately reduced by 29.11%, 37.07%, 
and 29.12% for 00, 30dB and 20dB of signal-tenoise 
ratio(SNR) respectively using the features processed 
by RASTA method and further reduced by 42.1W0, 
30.50%, and 19.64% respectively using the features 
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proposed here. 
This paper is organized into 6 sections. Section 2 de- 

scribes the robust feature extraction process discussed 
here. Section 3 analyzes the statistics of modulation 
frequency band spectrum of speech. In section 4, three 
approaches of using various filters in place of the U S  
TA filter are proposed. The experimental results are 
evaluated and discussed in section 5. Section 6 makes 
the concluding remarks. 

feature 

speech 

H(z) 

feature 

Figure 1: The block diagram of robust feature extrac- 
tion process. 

2 Robust Feature Extraction 
The block diagram of the robust feature extraction 

process discussed here is plotted in Fig. 1. The input 
speech is first processed by short-time fourier trans- 
form (STFT) and then the corresponding power spec- 
trum for each frame is filtered by a set of 30 triangular 
band-pass filters spaced uniformly on a mel-frequency 
scale. A filter H(z) is then applied to filter the tempo- 
ral trajectories of each mel-frequency band component. 
Finally, the discrete cosine t r d o r m  (DCT) is applied 
for each frame to achieve the cepstral coefficient. As 
listed in Table 1, a va.riety of features with different fil- 
ters H(z) are compared. Apparently, as H(z) = l, the 
output features denote the well-known mel-frequency 
cepstral coefficient (MFCC). The RASTA-MFCC is 
derived using a band-pass filter where more slowly and 
quickly changing parts for each spectral component are 
suppressed. Also, if the one-pole IIR filter of H(z) in 
RASTA-MFCC, i.e., l - - o . ~ r - f  is ignored, the deriva- 
tion of the MFCC features is obtained which desig- 
nates the delta-MFCC[7]. Fig. 2 shows the fkequen- 
cy responses and impulse responses of H(e) used in 
RASTA-MFCC and delta-MFCC respectively. It can 
be noted that the frequency with peak frequency re- 
sponse is moved to lower position by the one-pole iilter 
of H(z) in RASTA-MFCC which supports the theo- 
ry of Green[6] mentioned above. In addition, when 
H(z) is designed as a high-pass filter which makes the 
long-term average of spectrum of mel-frequency band 
identically aero, the derived MFCC features are post- 
processed by the well-known cepstral mean subtraction 
(CMS) process. 

Table 1: Summary of various types of features with 
respect to H(z) 

3 Modulation Frequency Band 
Spectrum of Speech . 

As mentioned previously, the RASTA band-pass 13- 
ter is developed to fit the peak frequency of modula- 
tion frequency band spectrum by human hearing per- 
ception. In this section, we try to analyze the mod- 
ulation frequency band spectrum of speech signal in 
statistics. In other words, the frequencies with peak 
frequency responses in modulation frequency domain 
are thus obtained by statistical analysis instead of hu- 
man hearing perception discussed by Green[G]. Here 
all of the Mandarin syllables which are composed by 
22 INITIAL’S (consonants) and 41 FINAL’S (vowels 
but including possible medid and n d  ending) are 
used for analysis. The frequency responses of tempo- 
ral trajectories. for the mel-frequency bands are plot- 
ted in Fig. 3, where only 4 bands out of all the 30 
bands are included. It can be noteworthy that sim- 
ilar shapes of modulation frequency band spectrum 
are obtained for all the mel-frequency bands where 
there udst two peaks at around 0 Hz and 18Eh respec- 
tively. Also, the magnitudes of modulation frequen- 
cy band spectrum for lower frequencies(s1ow change 
in the mel-frequency band) are usually much larg- 
er than that for higher frequencies which indicates a 
cut-off frequency around 40 Hz. This characteristic 
is consistent with the band-pass filter used in delta- 
MFCC or RASTA-MFCC. However, the effect of mul- 
tiple peaks in the modulation frequency response is not 
considered in delta-MFCC or RASTA-MFCC. There- 
fore, we try to use a bank of filters to replace the 
band-pass filter in RASTA method by unphasiziig 
the statistically peaks of speech in modulationfiquen- 
cy band spectrum to improve the recognition ptrfor- 
mance. 

4 A Variety of Filters 
4.1 Bank of RASTA-like filters 

in Table 1 can be expressed as follows : 
The general form of RASTA band-pass filter shown 
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Figure 2: The frequency and impulse responses for 
(a)RASTA-MFCC and (b)delta-MFCC 

where the order N of the FIR filter determines the cut- 
off frequency while the parameter Q of the all-pole IIR 
filter can be adjusted to fit the frequency with peak 
spectra in the modulation fiequency domain. There- 
fore, a bank of RASTA-like filters with parameters N 
and Q carefully selected are used such that the de- 
signed filters can match the envelope shown in Fig. 3. 
Here two RASTA-like filters with different parameters 
Q carefidly adjusted to fit the peak frequency 4 Hz and 
18 Ho mentioned previously are utilised. In addition, 
the order N in the FIR filter is chosen such that nearly 
40Ho of cut-off frequency can be achieved. The derived 
features are called RASTA-FB-MFCC. 

4.2 Three-channel Octave Band-filter 

In the second approach, in order to systematically 
design the multiple band-pass filters, a three-chamel 
octave band-filter band with a smoothed rectangular 
window spline is used[8]. To derive a real causal filter 
from the envelope of each bank of the three-channel oc- 
tave filter banks, a transformation function is applied 
with the following fom[9]: 

Band 

= Ae-io'OO(A) (2) 

where A denotes the desired shape of the modulation 
frequency response, S denotes the hilbert transform 
and His the derived causal filter. In this way, the 
phase term corresponding to the envelope of the filter 
can be easily obtained. The derived features are called 
OB-MFCC. 

4.3 Data-driven Filter 
Instead of using the multiple band-pass filters dis- 

cussed above, an interesting way to design the filter 
H(o) is to use directly the envelope of the spectra of 
modulation frequency band of speech shown in Fig. 
3. Here the transformation function in eq.(2) is al- 
so applied to derive the corresponding phase term. 

The flter thus designed is called data-driven filter. 
Also, in order to disregard the steady-state channel 
noise such as microphone or transmission line which 
appears in the dc component of the modulation fro 
quency band spectrum, the dc component of Fig.3 is 
set to zero. 

Figure 3: The frequency responses of mel-frequency 
band spectrum of speech signal 

5 Experimental Results 
The preliminary simulation experiments are per- 

formed for speaker dependent tests. A speech database 
produced by 3 speakers is used. For each speaker, 4 col- 
lections of d the 1345 Mandarin syllables for two type- 
s of microphones C410 and D3700 were produced re- 
spectively. C410 is a crosstaking and noise-cancelling 
capacitor microphone with a flat frequency response, 
while D3700 is a hand-held dynamic microphone. For 
each speaker, 3 collections of the 1345 Mandarin syl- 
lables are used for training and 1 collection is used for 
testing. The experimental results are average of the 
three speakers. 

The experimental results for various types of fea- 
tures are shown in Table 2. In matched condition, the 
training and test data are produced using microphone 
C410, while in unmatched conditions, the test data are 
recorded by microphone D3700. Also, different lev- 
els of additive white Gaussian noise are included in 
the tests. In experiments 1-3, the experiments using 
the well-known MFCC features (stationary features) 
and delta-MFCC features (dynamic features) are e- 
valuated. It is obvious that in matched conditions, 
the recognition rates using MFCC features outperform 
that using delta-MFCC, whereas the performance us- 
ing MFCC features degrades much more seriously than 
that using delta-MFCC features in unmatched condi- 
tions. In experiment 4, the RASTA-MFCC features 
are used where the error rates can be largely reduced 
in unmatched conditions , especially in Topi result- 



s. Furthermore, when the RASTA-FB-MFCC features 
are used, the Topl(Top5) error rates are reduced by 
59.01%(67.70%), 56.26%(77.38%), 43.57%(64.61%) for 
00, 30dB and 20dB of SNR respectively in unmatched 
conditions in comparison with the results using MFC- 
C features. Moreover, the recognition accuracy is in- 
creased from 87.29% to 90.19% in matched conditions. 
However, in comparison with the results using com- 
bined MFCC with delta-MFCC features, the recogni- 
tion rates are reduced by around 2% in matched con- 
dition while they can also be increased by 3-17% in 
unmatched conditions. Experiments 6 8  are the exper- 
imental results using the bchamel octave band-filter 
band, where lower 1, 2 and 3 filters out of the filter- 
banks are used separately. It can be found that compa- 
rable results can be obtained with that using RASTA- 
MFCC features when only 1 filter is used. However, 
the recognition rates using 2 filters are lower than that 
using RASTA-FB-MFCC features. This is because the 
RASTA-FB-MFCC features are derived by emphasiz- 
ing the most important parts of speech. Note that al- 
most identical results are obtained when 2 and 3 filters 
are used. It proves the point that the high frequency 
parts in modulation frequency domain are intensively 
not important. In the last experiment, the data-driven 
filter is used where the performance degrades more se- 
riously in matched condition and unmatched condition 
with convolutional noise only as compared to that us- 
ing RASTA-MFCC features. However, better recog- 
nition rates in noisy environments with higher level 
of additive noise can be obtained especially in Top5 
results using the data-driven lilter. 

6 Conclusion 

* 
6. OBMFCC(1) 1 82.97 179.93 165.28 140.30 

In this paper, we intend to derive robust speech f m  
tures for recognition by filtering the temporal trajec- 
tories of frequency band s p e c t r k  The statistically 
peaks of speech in modulation frequency band spec- 
trum are first obtained by analyzing a large set of 
speech data. Then a variety of lilters are proposed to 
emphasize these statistical peaks such that significant 
improvements in accuracy under noisy environments 
can be achieved. 
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/Le i;," 1 match 1 oo mismatch ~ 1 30dB 20dB 
87.29 70.63 43.05 18.81 

(14) (98.74) 95.17) 75.99) 44.76) 
2. delta-MFCC 81.71 76.51 58.07 38.22 

(14) ((98.29) 196.36) k82.38) 158.74) 
3. MFCC+delta I 92.04 184.83 164.25 136.13 

1 :l4; . ' 1117.99) 197.32) 190.56) 1173.09) 1 
7. OBMFCC(2) 89.81 86.39 70.63 47.43 

8. OB-MFCC(3) 90.33 87.81 70.33 47.50 

9. data-driven 77.62 76.65 67.29 45.06 

(98.44) 97.84) (91.67) (79.18) 

(42) (98.29) 97.70) (92.04) (81.21) 

I (14) l(97.47) k97.03) l(93.16) l(81.12) J 
Table 2 The Topl(Top5) recognition results for exper- 
iments 1-9 using various types of features ( also shown 
the number of feature dimensions). 
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